
I/O

UC4 (CID4)

UC3 (CID3)

UC2 (CID2)

UC1 (CID1)

Controller

FC Flow

QUIC (SID=0)

IP: 10.10.1.1
QUIC (SID=0)

IP: 10.10.1.1
QUIC (SID=0)

IP: 10.10.1.1

QUIC (SID=0)QUIC (SID=0)QUIC (SID=0)

recv_from

QUIC (SID=0)

IP: 10.10.1.4
QUIC (SID=0)

IP: 10.10.1.3
QUIC (SID=0)

IP: 10.10.1.2

se
nd
_t
o

ack

uc retransmit

app data

uc fall-back

aggr. ack

app data

uc retransmit
FCQUIC (SID=1)

FCQUIC (SID=1)

IP: 239.239.239.35

send_to

𝐿𝑀

𝐿1

𝐿2

𝐿3

𝐿4

CID1

CID2

CID3

CID4

stream_send

Message passing

Unicast path packets

Flexicast !ow packets

API call Tokio task

Figure 3: Overview of our implementation of the Flexicast QUIC source.

UC1

UC2

Controller

FC
Flow

uc_retr(2,5,6,8)

ack
(2.

.4,
6..

8)

uc_
ret

r(5
)

aggr. ack(3..4,7)

uc_retr(2,8)

ack(3..7)

Figure 4: The controller aggregates acknowledgments re-
ceived on the unicast path before sending them to the !exi-
cast !ow module. It delegates unicast retransmissions to the
controller, which dispatches them to the unicast path based
on the per-receiver acknowledgments.

falls back on unicast, the Controller is also responsible for bu"ering
application data if the unicast path instance cannot sustain it.

Multithread architecture. Our implementation leverages the
tokio [53] runtime to execute the di"erent modules on multiple
cores on the same machine, using message passing to communi-
cate. Future work might consider running the modules on distinct
machines as fan-out servers [28] and design speci#c protocols to
communicate using the same control messages as this paper.

Scalable reliability.All active receivers must acknowledge each
packet sent on the !exicast !ow before the source can release it
from memory. This raises a challenge regarding how to manage
the acknowledgments while ensuring scalability. The Controller
aggregates acknowledgments from each receiver and sends a single
acknowledgment for each packet to the !exicast !ow module. It
then distributes the unicast retransmissions using these acknowl-
edgments. Figure 4 shows an example of acknowledgment aggrega-
tion and unicast retransmission with two receivers. In this example,
the #rst UC1 instance receives from the receiver acknowledgments
for packet numbers 2 to 4 and 6 to 8; the second receives from 3 to
7. They forward these acknowledgments to the Controller, which
aggregates them before sending them to the FC Flow module. The
FC Flow module delegates the frames sent in packets that are con-
sidered lost to at least a receiver (2,5,6,8). The Controller dispatches
the retransmissions to each unicast path based on the per-receiver
acknowledgments.

6 EVALUATION
We evaluate our implementation based on quiche on both Cloud-
Lab [24] and emulated networks, respectively, to benchmark its
scalability and to assess its robustness in case of failures on the
underlying multicast distribution tree. All our experiments use
the Network Performance Framework [7] and are reproducible on
CloudLab and commodity servers.

6.1 Scalability of FCQUIC
CloudLab topology. We leverage CloudLab [24] to benchmark
Flexicast QUIC. We use 6 d6515 nodes: the Source, the Network,
and four nodes connected on a LAN with the Network, emulating
receivers. All links have a capacity of 100Gbps, and the nodes
are equipped with AMD EPYC 7452 processors, 32 CPU cores, 64
threads, and 128GB of DRAM. We run up to 250 receivers per host
in distinct network namespaces for 1000 receivers.

FastClick router. We emulate the multicast tree on a single
node (the Network) using FastClick [8], an extension of the Click
modular router [41] enabling fast packet processing through op-
timizations such as packet batching and DPDK [27] support. The
FastClick router replicates packets to each receiver using multiple
cores to simulate the multicast distribution tree. This implementa-
tion sustains 95Gbps of replicated tra$c. It also forwards unicast
packets between the Source and the receivers.

Measured metrics. The Source generates a constant 80Mbps
bit-rate, which is considered an upper-bound for a 4K video stream-
ing application [3]. The payload consists of packets with 1200 B of
payload. We measure three metrics while increasing the number of
simultaneous receivers:

• Receiver packet throughput: the throughput (i.e., including
protocol overhead), aggregated on all receivers;

• Max source CPU : each second, we poll the CPU usages on
the Source and report the busiest CPU to identify a potential
bottleneck in our implementation;

• Ack rate: the throughput of the acknowledgments returned
by all receivers.

We compare thesemetrics with (i) Baseline: pure UDP tra$c without
acknowledgments; (ii) QUIC: per-receiver unicast QUIC connec-
tions. We load-balance the receivers between 4 parallel I/O loops to
improve the scalability of QUIC; (iii) FC: Flexicast QUIC; (iv) FC-5:

ACM SIGCOMM Computer Communication Review Volume 55 Issue 2, April 2025

	Abstract
	1 Introduction
	2 Background
	3 Flexible Multicast
	4 Flexicast QUIC
	4.1 Advertising a Flexicast Flow
	4.2 Changes to Multipath QUIC
	4.3 Reliability mechanisms
	4.4 Managing the Flexicast flow

	5 Implementation
	6 Evaluation
	6.1 Scalability of FCQUIC
	6.2 Robustness of Flexicast QUIC

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

