
𝐿

𝑀1

𝑀2

(FID,SID=1)[STREAM(𝐿)]

(CID1 ,SID=0)[PATH_ACK(...)]

(CID2 ,SID=0)[PATH_ACK(...)]

𝐿𝑀

𝐿1

𝐿2

uc path
fc !ow

Figure 1: High-level overview of Flexicast QUIC. A connec-
tion combines per-receiver (𝑀1 and 𝑀2) bidirectional unicast
paths and shared unidirectional flexicast flow(s). The uni-
cast paths are protected with individual keys (𝑁{1,2}) while
the !exicast !ow uses a common key, 𝑁𝑀 . Flexicast QUIC
leverages Multipath QUIC [43] to manage the !exicast !ow
as an additional path. While a QUIC path is identi"ed by a
Connection ID (CID), !exicast !ows use a Flow ID (FID). Each
path/!ow uses its own packet number space ID (SID).

(correctly) con"gured, the source can decide to send or retransmit
data over this receiver-speci"c unicast path.

Contributions.We make the following contributions:
• We design Flexicast QUIC (FCQUIC), relying on and extend-
ing Multipath QUIC [43].

• We implement of FCQUIC in Cloud!are quiche [15].
• Our benchmarks show that an FCQUIC source can sustain
more than 1000 receivers and deliver >80Gbps of tra#c.

• Our evaluations show the robustness of Flexicast QUICwhen
the multicast network fails.

We release the source code of Flexicast QUIC to explore larger-scale
deployment as part of our future work (Section 8).

2 BACKGROUND
This section gives a brief overview of QUIC [38], Multipath QUIC
(MPQUIC) [43] and IP Multicast [31].

QUIC. QUIC [38] is a connection-oriented protocol running
above UDP. TLS 1.3 is embedded in QUIC to provide a fast and
secure session handshake. A QUIC connection starts with a hand-
shake, during which the TLS session keys are computed and con-
nection parameters negotiated. In contrast with the 4-tuple used
by TCP, a QUIC connection is identi"ed by source and destination
Connection IDs (CID) chosen by the end-hosts. The destination
CID is part of the header of each packet. Besides a few !ags, this is
the only information not encrypted in QUIC packets. Each QUIC
packet is identi"ed with a monotonically increasing packet number
(PN). This packet number is also encrypted in each QUIC packet.
QUIC packets are frame containers, i.e., they carry control and data
frames. This architecture makes it easy to extend the protocol by
de"ning new frames. QUIC supports reliable, ordered stream multi-
plexing through the STREAM frame and unreliable communication
with the DATAGRAM frame. Retransmitted frames are sent in new
QUIC packets with increased packet numbers.

Multipath QUIC. Multipath QUIC [43] extends QUIC by al-
lowing to use multiple paths within a single QUIC connection si-
multaneously. Multipath QUIC associates each path with a distinct

set of CIDs, communicated using the PATH_NEW_CONNECTION_ID
frame. Multipath QUIC support is negotiated during the handshake
with the initial_max_path_id transport parameter. Each path
on a Multipath QUIC connection uses a di$erent packet number
space [18]. Concretely, this means that packets sent on each path
are totally decoupled from the others. Some data sent over one path
can be retransmitted over another path. Furthermore, a receiver
can acknowledge packets received on one path over another path.
The IETF is "nalizing the standardization of this extension [43].
Several open-source implementations of QUIC already support
multipath [30].

IP Multicast. Enterprise and ISP networks supporting multicast
usually rely on Source-Speci"c Multicast (SSM) [31]. SSM allows a
single source to send data over multicast trees. The tree is identi"ed
by the address of the source and a multicast destination address.
The receivers use MLD [17] or IGMP [11] to join the multicast tree
dynamically. Multicast-enabled applications use either proprietary
protocols or RTP [52].

3 FLEXIBLE MULTICAST
This paper proposes the concept of !exible multicast (Flexicast in
short). We refer to Flexicast as the ability for a source to e#ciently
send encrypted and authenticated data to a set of 𝑂 receivers. For
this, the source manages 𝑂 + 1 cryptographic keys. First, it negoti-
ates key 𝑁𝑁 to securely exchange packets with receiver 𝑀𝑁 , creating
a bidirectional, secure unicast path. Second, it creates a shared key,
𝑁𝑀 , that it communicates to all receivers using this secure unicast
path. The source uses this key to encrypt packets targeting all re-
ceivers simultaneously, thus creating a shared unidirectional !ow
of data that we call a !exicast !ow thanks to the way packets sent
on this !ow can be delivered to the receivers: either through an
underlying multicast tree or using replication with IP unicast.

Flexicast !ow. If all receivers are attached to a multicast distri-
bution tree, the source can encrypt and authenticate a single packet
using 𝑁𝑀 , and rely on the network to e#ciently distribute it to all
receivers. Since all receivers have received 𝑁𝑀 from the source, they
can decrypt packets sent on the !exicast !ow. However, there are
situations where only a fraction of the receivers have managed to
join the multicast tree. Consider that receiver 𝑀1 could not join the
multicast tree. In addition to the packets sent on the !exicast !ow,
the source will generate and encrypt a new packet for 𝑀1 using 𝑁1
with the same application data.

If𝑃 → 𝑂 receivers did not manage to join the multicast tree, the
source needs to encrypt and authenticate𝑃 + 1 packets for each
data chunk it sends. When𝑃 = 𝑂 , this method would be equiva-
lent to delivering data over (unicast) QUIC, which is the current
solution QUIC servers use nowadays [33]. However, measurement
studies [39, 54] showed that the generation and encryption of QUIC
packets take substantial CPU resources on servers.

Flexicast o$ers a more e#cient and elegant solution. Considering
the worst case, i.e.,𝑃 = 𝑂 , the source could still generate a single
packet and encrypt it using 𝑁𝑀 . Instead of relying on an underlying
multicast distribution tree, the source could duplicate the bytes
generated by the transport protocol and send them over IP unicast
to each receiver. The sendmmsg system call can e#ciently perform
such action.

ACM SIGCOMM Computer Communication Review Volume 55 Issue 2, April 2025

	Abstract
	1 Introduction
	2 Background
	3 Flexible Multicast
	4 Flexicast QUIC
	4.1 Advertising a Flexicast Flow
	4.2 Changes to Multipath QUIC
	4.3 Reliability mechanisms
	4.4 Managing the Flexicast flow

	5 Implementation
	6 Evaluation
	6.1 Scalability of FCQUIC
	6.2 Robustness of Flexicast QUIC

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

