
MAY is not enough!
QUIC servers SHOULD skip packet numbers

Louis Navarre
louis.navarre@uclouvain.be

UCLouvain, Belgium

Olivier Bonaventure
olivier.bonaventure@uclouvain.be
UCLouvain & WEL-RI, Belgium

Abstract
The QUIC protocol increasingly replaces TCP as the dom-
inant transport protocol on the Internet. Its design closely
integrates TLS 1.3 with modern transport features such as
faster connection establishment and stream multiplexing.
QUIC uses unique and monotonically increasing packet num-
bers compared to the wrapping TCP sequence number.
In this paper, we analyze the behavior of QUIC stacks

against the optimistic acknowledgment (OACK) attack, i.e.,
whenever a peer falsely acknowledges non-received packets
to increase the transmission rate to saturate the emitter’s
network. Although QUIC implementations may skip packet
numbers to prevent such an attack, we find that of the 16
existing server implementations from the QUIC Interop Run-
ner, 11 use contiguous packet numbers and are vulnerable
to the OACK attack. In a controlled environment, we design
a simple OACK client and show that we can increase the
server’s bit rate up to > 200× depending on the stack. We
confirm the results by carefully reproducing the OACK at-
tack on a large Content Delivery Network server and suggest
an example of a patch to protect implementations.

CCS Concepts
• Networks→ Transport protocols; Denial-of-service
attacks.

Keywords
QUIC, Optimistic Acknowledgments Attack

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ANRW ’25, Madrid, Spain
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-2009-3/2025/07
https://doi.org/10.1145/3744200.3744772

ACM Reference Format:
Louis Navarre and Olivier Bonaventure. 2025. MAY is not enough!
QUIC servers SHOULD skip packet numbers. In Applied Network-
ing Research Workshop (ANRW ’25), July 22, 2025, Madrid, Spain.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3744200.
3744772

1 Introduction
Reliable transport protocols such as TCP [4], SCTP [16], and
QUIC [7] use acknowledgments to confirm the correct recep-
tion of data. Each acknowledgment indicates that all data,
including the returned sequence/packet number, has been
correctly received. Modern implementations of these proto-
cols return acknowledgments at different frequencies. A TCP
receiver usually acknowledges every second received packet.
The QUIC specification recommends sending an ACK frame
after receiving at least two ack-eliciting packets [7], but a
recent extension proposes to negotiate this frequency [6].
These rules are valid for honest receivers who want to

receive data reliably. However, in 1999, Savage et al. [11]
showed that malicious TCP receivers could manipulate their
acknowledgments to launch denial-of-service attacks against
servers. In a nutshell, to force the server to send data as
quickly as possible, a malicious receiver could send opti-
mistic acknowledgments that ignore packet losses (i.e., never
return duplicate acknowledgments of SACK block [5]) or
worse, send acknowledgments for data that it did not yet
receive. Savage et al. proposed extensions to TCP to solve
this problem, but they have not been adopted. In 2005, Sher-
wood et al. demonstrated that the attack was possible against
different TCP implementations [15]. Several solutions were
suggested to prevent such attacks against TCP using cu-
mulative nonces [11] and by randomly skipping sequence
numbers [15]. In 2016, Schaub and Trey released a user-space
implementation of TCP that performs this attack [12]. Laraba
et al. proposed a solution to protect TCP servers by tracking
all flows and identifying misbehaviors [8].

This attackwas known during the QUIC protocol standard-
ization, and countermeasures were discussed. Since QUIC
encrypts most of the packet headers and data, a firewall
cannot analyze the incoming QUIC packets and block op-
timistic acknowledgments, in contrast to TCP. This paper
explores whether attacks using optimistic acknowledgments
are possible on current QUIC implementations. Our in-lab

https://doi.org/10.1145/3744200.3744772
https://doi.org/10.1145/3744200.3744772
https://doi.org/10.1145/3744200.3744772


ANRW ’25, July 22, 2025, Madrid, Spain Louis Navarre and Olivier Bonaventure

results indicate that this attack is feasible. 11 of the 16
QUIC server implementations from the Interop Run-
ner [13, 14] are vulnerable. Section 2 gives background
to QUIC and the optimistic acknowledgment attack. In Sec-
tion 3, we precisely define the OACK attack in QUIC and
identify the QUIC server stacks vulnerable to this attack. In
Section 4, we design and implement a simple OACK predic-
tor, demonstrating the exposure of these 11 implementations
with in-lab measurements: some stacks send > 200× faster
than expected. We then carefully perform the OACK attack
on a website hosted on a CDN server. Finally, we propose a
patch to quiche [3] based on existing resilient implementa-
tions to detect OACK attacks (Section 6).

2 Background
This Section gives a brief overview of QUIC [7] and illustrates
an optimistic acknowledgment (OACK) attack.
QUIC [7] is a standardized transport protocol running

above UDP. QUIC closely integrates TLS 1.3 [10] to pro-
vide a secure and faster handshake than the TCP/TLS stack.
QUIC supports stream multiplexing to avoid the head-of-line
blocking problem of TCP and datagrams for unreliable de-
livery. One key difference between TCP and QUIC is their
packet representation. TCP uses a 32-bit sequence number
that identifies the position of the first byte of the payload in
the bytestream. This sequence number wraps for long con-
nections. When TCP retransmits a packet, it sends it with
the same sequence number as the initial transmission. QUIC
uses another approach: each packet is a frame container. Each
packet is uniquely identified by a monotonically increasing,
non-wrapping packet number. QUIC endpoints cannot reuse
the same packet number twice during a connection. Packet
numbers range from 0 to 262 − 1. A QUIC host does not re-
transmit lost packets as a TCP host does. QUIC retransmits
lost frames in new packets with a fresh packet number. QUIC
receivers acknowledge packets by sending ACK frames con-
taining the correctly received ranges of packet numbers. In
opposition to the clear TCP sequence number, QUIC packet
numbers are encrypted in the header.

The QUIC interop runner. More than twenty QUIC im-
plementations coexist in the wild [17]. The QUIC interop
runner [13, 14] is an initiative to provide an open-source,
free, and fully automated tool to assess the interoperability
of QUIC stacks in different scenarios. Seventeen implemen-
tations currently participate in the QUIC interop runner;
ngtcp2 and haproxy only provide docker images for their
servers, while chrome only provides its client.

The optimistic acknowledgment (OACK) attack was
first discussed on TCP [11]. Figure 1a illustrates this attack
on QUIC. The malicious client sends acknowledgments for
packets that it has not yet received. The server reacts to these

PN: 1

ACK: 1
ACK: 2

PN: 2
PN: 3
PN: 4
PN: 5

Server Client

(a) Not skipping packet numbers.

PN: 1

ACK: 1
ACK: 2

PN: 3PN: 4 [CONN._CLOSE]

Server Client

(b) Skipping packet numbers.
Figure 1: Optimistic acknowledgment attack example. PN
stands for packet number.
acknowledgments as a sign that it can increase its conges-
tion window and transmission rate since all data in flight
was correctly received. By sending acknowledgments before-
hand, the malicious receiver hides the losses to the sender,
thus abnormally increasing the sender’s congestion window
without considering the underlying network condition. Such
an attack can impact both the server and the network. A
coordinated attack targeting the same server might saturate
its network and potentially impact legitimate clients.
3 Optimistic acknowledgments in QUIC
This Section analyzes the optimistic acknowledgments at-
tack inside QUIC. For simplicity, we consider a client-server
connection in which the client requests a large file from the
server. The client is malicious and sends optimistic acknowl-
edgments to the server to increase its transmission bit rate.
To conduct this attack, the client must guess the sequence of
packet numbers that the server will generate. Its objective is
to acknowledge these packets before they are received; other-
wise, it would be harmless since the acknowledgments would
follow the network’s conditions. We leverage the QUIC In-
terop Runner to identify vulnerable server implementations
to the OACK attack. We assume that the client does not use
the transmitted data, i.e., it does not care whether it correctly
receives the packets sent by the server. This assumption is
reasonable since the client’s only interest is to attack the
server. A QUIC server is vulnerable to the OACK attack if
the client can guess the server’s sequence of packet numbers.
By knowing this sequence, the client can predict packets
it has not received yet and hide the network losses, thus
increasing the server’s bit rate. Table 1 reports the results of
the vulnerable implementations.
Skipping packet numbers. The client must guess the

server’s packet number sequence to optimistically acknowl-
edge packets sent from the server. This must be done care-
fully to avoid sending an ACK frame for unsent packets.
Indeed, the majority of tested implementations close the con-
nection when they receive an acknowledgment for an unsent
packet (Line (2) in Table 1). For example, the client could sim-
ulate the CUBIC congestion window update mechanism to
anticipate the packets sent by the server. QUIC [7] includes



MAY is not enough! QUIC servers SHOULD skip packet numbers ANRW ’25, July 22, 2025, Madrid, Spain

Implem quic-go
v0.50.0

ngtcp2
v.1.11.0

mvfst
v2025.03.03

quiche
v0.23.4

kwik
v0.10.1

picoquic
6304c2e9cc35

aioquic
v1.2.0

neqo
v0.12.2

(1) Skip PN ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗
(2) Correctness ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓

Implem nginx
145b228530c3

msquic
v2.3.9

xquic
v1.8.2

lsquic
v4.2.0

haproxy
v3.1

quinn
v0.5.9

s2n-quic
v1.52.0

go-x-net
d18fa4cfbd84

(1) Skip PN ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗
(2) Correctness ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: 11 of the 16 server implementations available from the QUIC Interop Runner are vulnerable to optimistic acknowl-
edgment attacks. We report the version used for the measurements (vX.Y.Z) or the docker image hash. Implementations are
vulnerable if they don’t skip packet numbers (1). Worse, implementations that do not assess the correctness of the ACK frames
expose themselves to straightforward OACK attacks (2). Except msquic, maintainers of the 11 implementations confirmed
their vulnerability to the OACK attack; we did not receive any response from the maintainers of msquic; we inspected the
source code of msquic to confirm its vulnerability. Patched implementations at the time of writing are underlined.

docker client

5 Mbps (tc)
tcpdump

0

20

aioquic

0

100

go-x-net

0

10

20
haproxy

0

100

200

T
X

[M
bp

s]

kwik

0

1000

2000
msquic

0

200

400

mvfst

0

20

neqo

10 20 30 40 50 60

Time [s]

0

1000

2000

T
X

[M
bp

s]

nginx

10 20 30 40 50 60

Time [s]

0

20

40
ngtcp2

10 20 30 40 50 60

Time [s]

0

100

quiche

10 20 30 40 50 60

Time [s]

0

50

100

xquic

Normal client
OACK client

Interop Runner

Figure 2: Virtual testbed running on a single machine. A
Linux bridge connects the two namespaces.
a mechanism to prevent malicious clients from attacking
the server with OACK: the possibility to skip packet num-
bers. Section 21.4 of the QUIC specification [7] mentions that
An endpoint MAY skip packet numbers when sending packets
to detect this behavior (i.e., optimistic acknowledgments). An
endpoint can immediately close the connection with a con-
nection error of type PROTOCOL_VIOLATION. There was no
consensus on the mandatory skipping of packet numbers
with the IETF QUIC working group to prevent these attacks,
and Section 21.4 of RFC9000 includes this as a possible fea-
ture. If the server skips some packet numbers when emitting
packets, the client cannot guess the sequence of packets, as
illustrated by Figure 1b. By randomly skipping some packet
numbers, the server can quickly identify malicious receivers
and potentially close the connection.
11 of 16 server implementations are vulnerable to

the OACK attack.We run each server implementation in
the runner to collect its emitted packets to transfer a 30MB
file. We consider that the server skips packet numbers when
we see gaps in the sequence of emitted packets on the server
during the data transfer. Out of the 16 tested servers, 11
do not skip packet numbers, including the implementations
from Meta (mvfst), Microsoft (msquic), Alibaba (xquic), and
Mozilla (neqo). Exceptmsquic, the maintainers of these imple-
mentations confirmed their lack of packet number skipping
support. We inspected the source code of msquic to confirm
that it does not skip packet numbers.

Assessing acknowledgments.During thismeasurement,
we noticed that several implementations do not assess the

correctness of received acknowledgments, i.e., the server
does not verify if the ACK frames sent by the client contain
ranges of packets that were not (yet) sent by the server. For
example, the client acknowledges packets 0..20 while only
12..16 are in flight. Such a server would extract the 12..16
range without considering that the 17..20 range corresponds
to packets that were not sent. By skipping this verification
step, the server is exposed to straightforward OACK attacks,
as the malicious client does not need to accurately predict
the packet number sequence.

Quiche, kwik, and aioquic do not verify the correct-
ness of received acknowledgments. To identify which
implementations are vulnerable to condition (2), we create a
simple client continuously acknowledging the 0..106 range
to ensure we do not offload the flow control limits from the
QUIC Interop Runner initial values. We observe that quiche,
kwik, and aioquic do not assess the correctness of received
ACK frames.We reported this issue to themaintainers of these
three implementations. While this lack of acknowledgment
assessment is a strong vulnerability, this paper focuses on
skipping packet numbers to protect from OACK attacks.

4 Implementations vulnerabilities
In Section 4.1, we design our OACK predictor and implement
it in a client application based on Cloudflare quiche1. Then,
we produce the OACK attack on the 11 vulnerable server
implementations in a controlled environment described in
Section 4.2. To be as generic as possible, we consider that
the server verifies the correctness of the received acknowl-
edgments and closes the connection otherwise.
4.1 Optimistic acknowledgment predictor
An OACK predictor must fulfill two properties: (1) Gener-
ate acknowledgment ranges faster than if the correspond-
ing packets were actually received; (2) The server must not

1We choose quiche only due to our affinity with the implementation.



ANRW ’25, July 22, 2025, Madrid, Spain Louis Navarre and Olivier Bonaventure

aioquic go-x-net haproxy

5
20
50

200
500

2000

T
X

[M
bp

s]

kwik msquic mvfst neqo

10 20 30 40 50 60

Time [s]

5
20
50

200
500

2000

T
X

[M
bp

s]

nginx

10 20 30 40 50 60

Time [s]

ngtcp2

10 20 30 40 50 60

Time [s]

quiche

10 20 30 40 50 60

Time [s]

xquic

Normal client
OACK client

Figure 3: Transmission bit rate measured on the server egress with a client limited at 5Mbps reception bandwidth, using the
vulnerable servers’ implementations taking part in the QUIC Interop Runner.

receive ranges for unsent packets. Designing this predic-
tor in QUIC is trickier than designing it with TCP. Indeed,
RFC9293 [4] (Section 3.5.2) states that upon receiving an
invalid acknowledgment (such as an OACK), a TCP server
should ignore the ACK and send an empty packet with the
correct sequence number without sending a RST to the client.
This design follows Postel’s principle: "Be conservative in
what you send, and liberal in what you accept". OACK pre-
dictors in TCP could rely on this mechanism to synchronize
the OACK with the server if they send acknowledgments
too quickly [15]. On the contrary, a QUIC server immedi-
ately closes the connection if it detects invalid acknowledg-
ments, requiring smarter predictors. Algorithm 1 presents

Algorithm 1: Simple QUIC OACK predictor.
𝑖𝑑 : aggressiveness of increase of 𝑑
𝑙 : number of packets before starting OACK
𝑑 : OACK increase. Init: 0
𝑛𝑚 : maximum received packet number
𝑛0: first packet number with data. Init: None
𝑛: received packet number
Result: Potential OACK ranges to send to the peer

1 if 𝑛0 is None then
2 𝑛0 ← 𝑛

3 end
4 if 𝑛0 + 𝑙 < 𝑛 or 𝑛 < 𝑛𝑚 then
5 return No range;
6 end
7 𝑛𝑚 ← 𝑛;
8 𝑑 ← 𝑑 + 𝑖𝑑 ;
9 return 𝑛0..𝑛 + 𝑑 ;

our OACK predictor for QUIC, introducing two parameters.
To prevent the client from injecting OACKs too early in the
connection, we delay the start of the attack by 𝑙 received
packets (line 4). For simplicity, we call 𝑛0 the first packet
number used by the server for delivering data. The core
idea of the predictor is to acknowledge each received packet
with an increasing delta. Whenever the client receives a new
packet with an increased packet number 𝑛, it sends an ACK
frame acknowledging packets 𝑛0 ..𝑛+𝑑 . As such, the client ac-
knowledges 𝑑 more packets that have not yet been received.
The trick continuously increases by 𝑖𝑑 the value of 𝑑 because
the attack induces congestion in the network while the client
keeps increasing the server’s bit rate.
4.2 Exploring QUIC stacks vulnerabilities
In this Section, we carry out the OACK attack on the 11
vulnerable QUIC server stacks from Table 1. During the
following experiments, we set 𝑖𝑑 = 4 and 𝑙 = 400. Due to
space limitations, we do not explore other sets of values.

Virtual testbed. We use the virtual testbed illustrated in
Figure 2 on a single machine to encourage the reproducibility
of the experiments. We work with NPF [1] to orchestrate and
reproduce our experiments. We leverage the docker images
from the QUIC Interop Runner [13, 14] to run the servers in
their namespace (docker). Our malicious client runs in its
namespace (client), and a Linux bridge connects these two
namespaces. Using tc, we add a 5ms delay in both direc-
tions on the main namespace. We add a 5Mbps bandwidth
limit towards the client to show the attack’s impact in a
constrained environment. The client requests a 600MB file
through an HTTP request, i.e., content large enough to ex-
pose the OACK behavior. We limit each experiment to 60 s.
Our malicious client uses small 10MB initial flow control



MAY is not enough! QUIC servers SHOULD skip packet numbers ANRW ’25, July 22, 2025, Madrid, Spain

0 10 20 30

Time [s]

0

50

100

T
X

[M
bp

s]

Server tx

0 10 20 30

Time [s]

0.0

2.5

5.0

Client tx
Normal client
OACK client

Figure 4: Server (left) and client (right) bandwidth of our
OACK client against a quiche server.

0 5 10 15 20 25 30 35

Time [s]

0

20

40

T
X

[M
bp

s]

Normal client, CUBIC server
OACK client, CUBIC server

Normal client, BBR server
OACK client, BBR server

Figure 5: Bandwidth measured on the ngtcp2 server when
using CUBIC against BBRv2.

limits and increases them based on the optimistic acknowl-
edgments it sends. We measure the server’s bit rate at its
egress.
Our OACK predictor tricks the 11 servers into in-

creasing their transmission bit rate up to 200× com-
pared to normal behavior. Figure 3 shows the server bit
rate with and without OACK enabled on the client. The du-
ration and success of the attack vary across QUIC implemen-
tations. For example, msquic closes the connection because
the OACK predictor sent an acknowledgment for an unsent
packet after ∼2 s of the attack. However, during this duration,
the server sends up to 1.5Gbps of traffic, a 300× increase to
the actual network bandwidth. Other implementations, such
as xquic and mvfst, send between 100 and 300Mbps traffic
to the network during 50 s and 5 s respectively. In conclu-
sion, Figure 3 assesses that our OACK predictor can attack
these servers by making them send data too quickly into the
network despite its simplicity.
The client transmission pattern does not indicate

any malicious behavior. Figure 4 analyzes the client trans-
mission bit-rate (right sub-Figure) when sendingOACKs. Our
predictor only sends OACKs (with extended ranges) when
it receives a packet from the server. As such, the bit rate to-
wards the server follows normal behavior. Considering that
QUIC packets are end-to-end encrypted, a middlebox cannot
identify the attack by analyzing the client’s traffic. We even
note that without OACK, the client’s transmission bit rate is
higher. The client sends larger ACK frames with more ranges
due to the gaps induced by the congestion losses.

CUBIC vs BBR on the server.Our OACK predictor relies
on the hypothesis that the servers use loss-based congestion

0 5 10 15 20 25 30 35

Time [s]

0

250

500

T
X

[M
bp

s]

Normal client, CUBIC server
OACK client, CUBIC server

Normal client, BBR server
OACK client, BBR server

Figure 6: Bandwidth measured on the quiche server when
using CUBIC against BBRv2.

control algorithms (CCA), such as CUBIC [18]. Such algo-
rithms never decrease their congestion window unless losses
have been reported by their peer. However, non-loss-based
CCAs such as BBR [2] use a different behavior to adapt the
congestion window. In 2019, BBR accounted for ∼40 % of In-
ternet traffic [9]. A BBR server may proactively decrease its
congestion window during a probing phase. If a client cannot
guess when the server enters such probing phase, it might
send an acknowledgment for an unsent packet because of the
decreased throughput. Figure 5 shows the impact of using
BBR instead of CUBIC with an OACK client and the ngtcp2
server. Because the server’s congestion window decreased
without seeing losses, our simpler predictor sent acknowledg-
ments for unsent packets, triggering the connection’s closing.
While using BBR first seems like a good remedial strategy, a
smarter predictor could predict such probing phases to attack
a BBR server; we leave it as future work. Figure 6 explores
the same scenario with quiche, which does not assess the
correctness of the received ACK frames (condition (2)). In-
terestingly, the server’s bit rate with BBRv2 is more than
doubled compared to CUBIC. Sending these acknowledg-
ments optimistically decreases the server’s perceived RTT,
increasing its transmission bit rate.
5 OACK on a deployed CDN server
A large Content Delivery Network (CDN) agreed to let us
measure the impact of a controlled OACK attack against its
network. We freely host a website consisting of static images
on the CDN, which handles the deployment and network
stack for interacting with the website. The request consists
of downloading eight images for a total of 17MB. The client
is connected to the Internet through a Turris Omnia access
point to measure the impact of the OACK attack while re-
maining careful. We limit the bandwidth from the Turris
towards the client to 1Mbps with tc and measure the bit
rate sent by the server at the ingress of the Turris. We use a
hard 1Mbps limit to better reflect the attack’s effect without
aggressively attacking the CDN network.
We can perform the OACK attack on the deployed

CDN server.We use our predictor from Algorithm 1 with
𝑙 = 400 and 𝑖𝑑 = 10. Figure 7 reports the results. The Baseline



ANRW ’25, July 22, 2025, Madrid, Spain Louis Navarre and Olivier Bonaventure

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time [s]

1

10

Tu
rr
is

R
X

[M
bp

s]

102

103

Baseline Limited (1 Mbps) OACK (1 Mbps)

Figure 7: Bandwidth measured on the Turris access point.
The client makes an HTTP/3 request to our website hosted
on a large Content Delivery Network.

curve shows the expected throughput without the 1Mbps
bandwidth limit, indicating that we can expect to receive
data up to 700Mbps. With the bandwidth limit and a benign
client (Limited curve), we see that the reception bit rate does
not exceed 1.1Mbps. However, the OACK curve indicates
that our malicious client correctly increases the server’s
transmission bit rate because of the OACKs; we receive up to
100Mbps traffic despite the hard 1Mbps theoretical limit. To
avoid taking the risk of actually attacking the CDN, we do
not attempt to reach the 700Mbps baseline bit rate. However,
we argue that the results from Figure 7 show the potential of
the attack if executed more aggressively against a deployed
server.
6 Preventing the OACK attack
To protect a QUIC host against OACKs, the implementation
must (1) assess the validity of the received acknowledgment
and (2) randomly skip packet numbers during the transfer.
Assessing acknowledgments’ validity. To assess the

validity of received ACK frames, QUIC endpoints must match
the acknowledged ranges (of packet numbers) to the packet
numbers sent. For example, Cloudflare quiche2 loops over all
unacknowledged packets, checking whether its packet num-
ber lies within the received ranges, not assessing its validity.
Supposing that the endpoint uses continuously increasing
packet numbers (the case of skipping packet numbers is an-
alyzed later), a correction consists of verifying whether the
ranges contain packet numbers higher than the maximum
packet number the endpoint sent.
Skipping packet numbers. As stated by RFC9000 [7],

QUIC endpoints may skip packet numbers to prevent the
optimistic acknowledgment attack. It is sufficient to ran-
domly skip a few packet numbers during the connection
to limit the overhead induced by the increased number of
ranges caused by the gaps. For example, quic-go randomly
skips a packet number at most every 131,072 packets; pi-
coquic randomly skips a packet number uniformly in the
range [3, 2561+𝑛𝑎 ] where 𝑛𝑎 is the number of already skipped

2Version 0.23.5, released on April 2, 2025

0 5 10 15 20 25 30 35

Time [s]

5
25

50

T
X

[M
bp

s]

75
100
125

Normal client, quiche
OACK client, quiche

Normal client, patched quiche
OACK client, patched quiche

Figure 8: Throughput on the fixed quiche server.

packet numbers. To detect an OACK attack, both implemen-
tations create dummy and unsent packets associated with
these skipped numbers. When the endpoint receives an ACK
from its peer, it checks whether the ranges acknowledge the
dummy packet; if so, they close the connection.
Patching quiche. We patched quiche with the ACK cor-

rectness and packet number skip. It adds 187 and deletes 16
lines of code. We run our OACK client against this modified
quiche server in the same setup as in Section 4.2. Figure 8
illustrates that the patched server is not vulnerable anymore
to the OACK attack. The server skips a packet number with
a uniform probability of at most one every 131, 072 pack-
ets. When the malicious client enters the OACK phase, the
skipped packet number triggers the close of the connection
on the server (after 17 s). The corrected server sends at most
18Mbps in its network before noticing the attack. The server
could detect the attack faster by skipping more packet num-
bers, at the cost of increasing the overhead and the number
of ranges acknowledged in ACK frames.

7 Conclusion
This paper explores the exposure of the QUIC protocol [7]
to the optimistic acknowledgment (OACK) attack, initially
discussed in TCP [11]. While QUIC’s specification [7] sug-
gests skipping packet numbers to prevent the attack, we
showed that 11 of the 16 server stacks participating in the
QUIC Interop Runner [13, 14] are exposed to OACKs. With
our simple OACK predictor, we illustrated the attack on
these implementations and demonstrated its efficiency both
in an emulated and a real network. Because QUIC packets
are end-to-end encrypted, middleboxes and firewalls cannot
identify an OACK attack upstream. Worse, a third party can-
not observe its attack because the client’s acknowledgment
rate follows benign behavior. We propose a 180-line patch
to quiche, one of the most vulnerable stacks, and show its
resilience to the OACK attack when correctly implement-
ing the recommendations. QUIC servers become robust to
the optimistic acknowledgment attack by skipping packet
numbers. While QUIC’s specification [7] exposes this feature
as a possibility, we argue that MAY is not enough and QUIC
servers SHOULD skip packet numbers.



MAY is not enough! QUIC servers SHOULD skip packet numbers ANRW ’25, July 22, 2025, Madrid, Spain

Acknowledgments
The Walloon Region has partially supported this work as
part of the funding of the FRFS-WEL-T strategic axis. We
thank the ANRW reviewers for their valuable feedback.

Ethical considerations
We contacted the lead developers of the vulnerable imple-
mentations before submitting the paper. The discussions are
ongoing, and we expect they can update their implementa-
tion before the paper is published. Multiple implementations
have already been fixed after our discussions. Our patch
for quiche requires only 180 lines, including comments and
updates in existing tests. We conducted almost all our ex-
periments inside our labs. The real network measurements
were performed carefully and with the agreement of the
target CDN. We constrained our network during this ex-
periment and ensured it did not exceed our real bandwidth
share during the attack. Finally, the optimistic acknowledg-
ment attack is well-known and even mentioned in QUIC’s
specification [7].

Artefacts
The conducted experiments are fully reproducible with the
current docker images of the QUIC Interop Runner. We re-
lease these experiment scripts, our OACK predictor client,
and our patch to quiche: https://github.com/louisna/quic-
optimistic-ack-anrw.

References
[1] Tom Barbette. 2024. Poster: NPF: orchestrate and reproduce network

experiments. In 2024 ACM Conference on Reproducibility and Replica-
bility.

[2] Neal Cardwell, Ian Swett, and Joseph Beshay. 2025. BBR Congestion
Control. Internet-Draft draft-ietf-ccwg-bbr-02. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/draft-ietf-ccwg-bbr/02/
Work in Progress.

[3] Cloudflare. 2025. Savoury implementation of the QUIC transport
protocol and HTTP/3. https://github.com/cloudflare/quiche Version
0.23.5.

[4] Wesley Eddy. 2022. Transmission Control Protocol (TCP). RFC 9293.
doi:10.17487/RFC9293

[5] Sally Floyd, Jamshid Mahdavi, Matt Mathis, and Dr. Allyn Romanow.
1996. TCP Selective Acknowledgment Options. RFC 2018. doi:10.
17487/RFC2018

[6] Jana Iyengar, Ian Swett, and Mirja Kühlewind. 2025. QUIC Acknowl-
edgment Frequency. Internet-Draft draft-ietf-quic-ack-frequency-11.
Internet Engineering Task Force. https://datatracker.ietf.org/doc/draft-
ietf-quic-ack-frequency/11/ Work in Progress.

[7] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multi-
plexed and Secure Transport. RFC 9000. doi:10.17487/RFC9000

[8] Abir Laraba, Jérôme François, Shihabur Rahman Chowdhury, Isabelle
Chrisment, and Raouf Boutaba. 2021. Mitigating TCP protocol misuse
with programmable data planes. IEEE Transactions on Network and
Service Management 18, 1 (2021), 760–774.

[9] Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi,
and Ben Leong. 2019. The great internet TCP congestion control census.
Proceedings of the ACM on Measurement and Analysis of Computing
Systems 3, 3 (2019), 1–24.

[10] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446. doi:10.17487/RFC8446

[11] Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson.
1999. TCP congestion control with a misbehaving receiver. ACM
SIGCOMM Computer Communication Review 29, 5 (1999), 71–78.

[12] Alexander Schaub and Deitch Trey. 2016. https://
reproducingnetworkresearch.wordpress.com/2016/05/30/cs-244-16-
misbehaving-tcp-receivers-can-cause-internet-wide-congestion-
collapse/comment-page-1/. CS244 ‘16: Misbehaving TCP receivers
can cause Internet-wide congestion collapse.

[13] Marten Seemann. 2025. QUIC Interop Runner. https://interop.seemann.
io/ Accessed on March 27, 2025.

[14] Marten Seemann and Jana Iyengar. 2020. Automating QUIC inter-
operability testing. In Proceedings of the Workshop on the Evolution,
Performance, and Interoperability of QUIC. 8–13.

[15] Rob Sherwood, Bobby Bhattacharjee, and Ryan Braud. 2005. Misbe-
having TCP receivers can cause Internet-wide congestion collapse. In
Proceedings of the 12th ACM conference on Computer and communica-
tions security. 383–392.

[16] Randall R. Stewart. 2007. Stream Control Transmission Protocol. RFC
4960. doi:10.17487/RFC4960

[17] QUIC working group (IETF). 2025. QUIC Implementations. https:
//github.com/quicwg/base-drafts/wiki/Implementations Accessed on
April 4, 2025.

[18] Lisong Xu, Sangtae Ha, Injong Rhee, Vidhi Goel, and Lars Eggert. 2023.
CUBIC for Fast and Long-Distance Networks. RFC 9438. doi:10.17487/
RFC9438

https://github.com/louisna/quic-optimistic-ack-anrw
https://github.com/louisna/quic-optimistic-ack-anrw
https://datatracker.ietf.org/doc/draft-ietf-ccwg-bbr/02/
https://github.com/cloudflare/quiche
https://doi.org/10.17487/RFC9293
https://doi.org/10.17487/RFC2018
https://doi.org/10.17487/RFC2018
https://datatracker.ietf.org/doc/draft-ietf-quic-ack-frequency/11/
https://datatracker.ietf.org/doc/draft-ietf-quic-ack-frequency/11/
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC8446
https://reproducingnetworkresearch.wordpress.com/2016/05/30/cs-244-16-misbehaving-tcp-receivers-can-cause-internet-wide-congestion-collapse/comment-page-1/
https://reproducingnetworkresearch.wordpress.com/2016/05/30/cs-244-16-misbehaving-tcp-receivers-can-cause-internet-wide-congestion-collapse/comment-page-1/
https://reproducingnetworkresearch.wordpress.com/2016/05/30/cs-244-16-misbehaving-tcp-receivers-can-cause-internet-wide-congestion-collapse/comment-page-1/
https://reproducingnetworkresearch.wordpress.com/2016/05/30/cs-244-16-misbehaving-tcp-receivers-can-cause-internet-wide-congestion-collapse/comment-page-1/
https://interop.seemann.io/
https://interop.seemann.io/
https://doi.org/10.17487/RFC4960
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://doi.org/10.17487/RFC9438
https://doi.org/10.17487/RFC9438

	Abstract
	1 Introduction
	2 Background
	3 Optimistic acknowledgments in QUIC
	4 Implementations vulnerabilities
	4.1 Optimistic acknowledgment predictor
	4.2 Exploring QUIC stacks vulnerabilities

	5 OACK on a deployed CDN server
	6 Preventing the OACK attack
	7 Conclusion
	References

