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Abstract—Low-latency applications drive an increasing num-
ber of modern applications. Latency depends on factors such as
link layer technologies and how higher-layer protocols cope with
transmission errors and packet losses. Most transport protocols
rely exclusively on retransmissions to cope with losses with
minimal overhead but potentially large tail latency. This paper
leverages network coding to propose the high-speed robust tunnel
(HIRT), providing timely packet delivery to any application
independently of the transport protocol. A network code recovers
lost data without requiring time-consuming retransmissions by
adding redundancy packets, thereby slightly increasing the band-
width usage to reduce the tail latency. Our algorithm dynamically
adapts the rate of redundancy packets by measuring the network
loss patterns. We implement HIRT using IPv6 Segment Routing
(SRv6). We suggest an efficient software implementation and
demonstrate on CloudLab that our solution can protect traffic
at high speeds (>50 Gbps) on standard servers even when facing
severe packet losses in the network. We evaluate HIRT with
HTTP over TCP/QUIC, and file system benchmarks over a real
network with losses, Starlink. HIRT reduces the tail latency of
short HTTP requests by 2× and the mean request completion
time of longer requests by up to 20%. HIRT also decreases the
tail latency of NFS requests by up to 20%.

Index Terms—Forward Erasure Correction, Network Layer
Coding, High-speed networking

I. INTRODUCTION

An increasing number of applications require low latency,
such as automotive use-cases, augmented reality, online gam-
ing, and future developments like telemedicine. In these con-
texts, a slow response can result in poor user experiences at
best, or lead to serious casualties at worst. An important con-
sideration is that the latency of the slowest responses—referred
to as tail latency—is also a key matter. Studies have shown
that accepting a slower 1% response for web services can
seriously damage market shares [1], [2]. For instance, this
requirement led 5G networks to be built with low latency as
a key feature [3]–[5].

Standard Selective-Repeat ARQ (SR-ARQ) loss recovery
mechanisms used by common transport protocols, such as TCP
and QUIC [6], are not well-designed to provide low latency in
lossy networks. First, time-consuming retransmissions can take
several round-trip times (RTTs) [7]. In case of high end-to-end
delays, the added retransmission time can severely impact the
application and, consequently, the quality of experience.

Second, retransmission mechanisms require resources on
the sender and the receiver. The sender must manage retrans-
mission timers and both endpoints need to maintain buffers,

either to store out-of-order data or for retransmissions when
losses occur. This can be problematic for devices with limited
memory and computing power such as embedded systems.
Long flow completion times also consume the battery life of
portable devices by keeping the network chips awake [8].

Finally, on networks exposing non-congestion induced
losses such as Starlink [9] and 5G Fixed Wireless Access
(FWA), loss-based congestion control algorithms may inade-
quately decrease the transmission rate at the source. Network
service providers know that packet losses can negatively
impact the performance perceived by their interests. To cope
with packet losses in access networks, some network operators
have deployed middleboxes that intercept TCP connections to
improve their performance [10]. However, with the growth of
QUIC [6] and the utilization of encrypted tunnels for VPNs,
network operators cannot deploy middleboxes that intercept
all these connections anymore.

Forward Erasure Correction (FEC) can be used to alleviate
the cost of retransmissions [11]–[16]. It adds redundancy
packets a priori, in contrast to ARQ mechanisms [17] which
act a posteriori, retransmitting packets after some feedback is
received from the receiver. With FEC, the encoder interleaves
redundancy packets with the data it transmits. This extra data,
alongside the correctly received packets, enables the decoder to
recover lost packets. The added delay is significantly reduced
as it corresponds to the arrival of the redundancy packets
which is independent of the RTT. FEC is more memory and
CPU consuming compared to classical SR-ARQ mechanisms
on the computing nodes [18].

Forward Erasure Correction methods are usually applied
at the datalink [19]–[21] and the transport layer [12], [18],
[22]–[29], respectively to protect a single link or an entire
path between two end-hosts. The end-to-end approach pro-
vided by transport-layer FEC (TL-FEC) has both benefits
and drawbacks. The FEC algorithm can be application-aware,
protecting only some application objects [16]. However, it
cannot make many assumptions beforehand about the path that
the packets follow, such as the delay or the reliability of the
routers. Additionally, at the transport-layer, a FEC extension
requires standardization and upgrading the implementations on
all (potentially heterogeneous) end-hosts, which will require
many years or more [30].

This paper leverages the fact that many network operators
are replacing their core IP or MPLS network with Segment
Routing [31]. In particular, the deployment of IPv6 Segment979-8-3503-5171-2/24/$31.00 ©2024 IEEE
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Figure 1. Architecture of HIRT to protect VPN traffic. The PE encapsulates the packets from its client with an SRv6 header and adds the Encoder and
Decoder SIDs to protect the packets with HIRT. The Encoder also assigns an ESI to each source symbol and generates the repair symbols (dashed packet)
using the RLC coding scheme. The CE recover the losses using the received symbols (source symbol with ESI=1 and the repair symbol) and decapsulates
the SRv6 header of the source symbols before transmitting the packet to the server. The repair symbol does not go out of the tunnel.

Routing [32], [33] brings the support for network program-
ming [34] that enables operators to deploy advanced services
in their network. We propose the High-Speed Robust Tunnel
(HIRT), which implements FEC at the network layer. As fur-
ther detailed in Section II, it enables the protection of multiple
segments simultaneously or even an entire backbone inside a
tunnel. FEC can be suggested as a service to end-hosts wishing
to optimize the latency of their applications without requiring
to implement FEC themselves. Multiple end-hosts may benefit
from the same tunnel simultaneously without compromising
the security and integrity of their communication. Tunnels
play an important role in the Internet today. They are used
for Virtual Private Networks [35], networks using orthogonal
technologies [36]–[38], MPLS [39], Segment Routing [31] and
even in cellular networks [40].

Three main challenges arise when considering FEC at the
network layer: (i) propose FEC as a service to protect specific
flows requiring low latency without user intervention and using
already deployed protocols; (ii) adapt the ratio of redundancy
packets to the network conditions to avoid wasting too much
bandwidth while offering good enough protection to recover
losses in the tunnel; (iii) efficiently generate redundancy
packets and provide fast lost data recovery to simultaneously
protect distinct flows.

We provide an implementation of HIRT leveraging IPv6
Segment Routing (SRv6) [32] and its network programmabil-
ity [34] to deploy FEC tunnels protecting specific segments
in the network. Figure 1 shows the overall architecture of
HIRT protecting a VPN traffic. HIRT solves the first challenge
by allowing clients to benefit from FEC without knowing
it and leveraging SRv6. In Figure 1, the Customer Edge
(CE) encapsulates the traffic from the Client inside an SRv6
header to trigger FEC protection (Section III). The second
challenge is addressed by leveraging feedback from the de-
coder, and using the Convolutional Random Linear Code [41]
scheme to dynamically adapt the amount of redundancy (Sec-
tion IV). To address the last challenge, we implement HIRT
in FastClick [42] with several optimizations, including kernel
bypass and a scalable multithreading architecture (Section V).
We show that HIRT can protect >50 Gbps under >3% losses.

We further demonstrate the effectiveness of HIRT over
the Low Earth Orbit (LEO) satellite network Starlink, which
exhibits non-congestion induced losses [9] that can double

the flow completion time of short requests. We use HTTP
benchmarks to show that HIRT can effectively recover lost
packets independently of the transport protocol and reduce
this tail latency by up to a factor of 2. HIRT also reduces
the request completion time of longer responses by several
RTTs by recovering packet losses without impacting the end-
host’s transport congestion controller. Finally, we highlight the
benefits of HIRT on a network file system benchmark using
Starlink. We show that tail latency is reduced by up to 20%.

The use of FEC below the transport layer to protect ag-
gregated traffic across data centers has already been explored
by Maelstrom [43]. Maelstrom uses multiple interleaved XOR
coding windows to recover from burst losses. In 2011, Mael-
strom could protect up to 700Mbps of traffic. The source code
of Maelstrom is not publicly available for comparison. Instead,
we build a simple packet simulator generating reproducible
losses and implement HIRT and Maelstrom to further compare
their performance in Section VIII.

Contributions. We make the following contributions:
• The design of HIRT inside IPv6 Segment Routing.
• An adaptive algorithm to schedule the generation of repair

symbols based on loss estimation feedback and RLC.
• A high-speed implementation1 of HIRT, enabling
>50Gbps of traffic protection under heavy losses.

• Evaluations of HIRT in a real network exposing trans-
missions error (Starlink) under HTTP and file transfer
benchmarks.

• A packet simulator where we compare HIRT and Mael-
strom [43] under reproducible loss patterns.

II. NETWORK LAYER FORWARD ERASURE CORRECTION

Forward Erasure Correction is a recovery method consisting
in sending redundancy information (repair symbols) alongside
the data (source symbols). A recipient can recover lost source
symbols by using this redundancy without the need for re-
transmissions. Erasure codes are generally used to generate the
repair symbols, e.g., the Reed-Solomon codes [44]. Consider
an emitter sending source symbols S1, S2, . . . , Sm and repair
symbols R1, R2 . . . , Rn. A receiver recovers any set of k ≤ m
lost source symbols by receiving at least k repair symbols.
The Convolutional Random Linear Codes (RLC) scheme [41]

1Source code available: https://github.com/louisna/HIRT.git.



is another method, used in this work, to generate the repair
symbols. Each redundancy data is computed as a linear com-
bination of the source symbols it protects. The coefficients of
the linear combination are pseudo-randomly generated. The
recipient recovers the lost symbols by solving a linear system
using the correctly received symbols. The XOR scheme is a
special case of RLC where all coefficients are set to 1.

Forward Erasure Correction techniques are typically applied
at the datalink [19]–[21] and the transport layer [12], [18],
[22]–[29]. Compared to the transport layer, implementing FEC
at the network layer (NL-FEC) brings several benefits. First,
the computation is done on intermediate routers. It enables
to aggregate the traffic from multiple sources to increase the
overall flow from the encoder to the decoder. Aggregating
numerous flows helps to spare resources as the same redundant
packets can protect different flows. When the losses happen
in bursts, this prevents every transport sender from sending
numerous redundant packets for each flow to ensure that long
bursts can be recovered. This is not possible with transport-
layer FEC.

Second, NL-FEC enables different use-cases compared to
FEC at the transport layer. At the transport layer, FEC can
leverage knowledge from the application to better schedule
the repair symbols generation [16]. However, the FEC emitter
cannot make any assumption on the paths its packets follow. At
the network layer, one can dynamically deploy FEC to protect
specific links or paths that exhibit non-congestion induced
losses. It also becomes possible to deploy multiple independent
tunnels in a given network.

The flexible deployment of the tunnels enables network
operators to make several assumptions about the link or path
to protect, such as the available resources of the routers (buffer
sizes, network interface controllers, link reliability,. . . ). When
the network is over-provisioned in terms of bandwidth, which
is the case for common internet or cloud providers [45], one
may assume that packet losses are mainly due to transmission
errors. When the error is due to congestion inside the tunnel,
the decoder can mark the recovered packet with ECN [46] to
notify the end user. The decoder can also mark repair packets
with a lower quality-of-service so that the routers along the
tunnel drop these packets first.

When operating over a link with non-congestion-induced
packet losses, recovering these packets at the network layer
and hiding those loss events to the transport layer avoids
an unnecessary decrease of the transport layer congestion
window. Hiding loss events to the congestion controller is
explicitly discouraged at the transport layer where the origin
of loss events is undetermined [47]. By deploying HIRT on
links where losses are known to not be congestion-induced,
erasures can be recovered and hidden to the transport layer to
increase the throughput of transport connections with no harm
for the network. We highlight this behavior in Section VII-A.

III. INTEGRATION IN IPV6 SEGMENT ROUTING

This section presents the design of HIRT within IPv6
Segment Routing (SRv6) using the Network Programming

paradigm [34]. Similar approaches can be taken to integrate
network layer FEC in different protocols, e.g., MPLS.

IPv6 Segment Routing is a source-routed mechanism where
the source specifies the network segments that the packet
must follow to reach its destination. In SRv6, each Segment
Identifier (SID) is represented by an IPv6 address. An SID can
embed network functions to trigger specific behavior on the
packet directly in the data plane [32]. Operators often deploy
SRv6 for intra-domain purposes but its deployment increases
on the Internet [48]. As a result, HIRT is dependent of the
deployment of SRv6.

A. HIRT in SRv6 Network Programming

We leverage the Segment List in the Segment Routing header
to deploy FEC on routers. The two SIDs (of the encoder and
decoder) are carried in the Segment List of the SRv6 header.
This SRv6 header can be added either by the encoder, an
upstream router or the source (in Figure 1, the CE adds this
header). In the first case, the network operator may decide
to protect all traffic to a given destination without requiring
applications to be aware of the tunnel. In the second situation,
any host may decide to use the tunnel for its specific traffic.
Only applications that may benefit from HIRT (e.g., latency-
sensitive ones) can activate it by adding the SRv6 header. This
list is also used to recover some fields of the IPv6 packet
header that may be altered inside the tunnel by intermediate
routers, such as the destination address, that is different when
a packet is processed by the Encoder and Decoder routers.

B. Source and repair symbols representation

HIRT protects data at the packet-level. Thus, the source
symbols are IPv6 packets exchanged by end-hosts through
the tunnel. Using packet-level protection enables the tunnel
to make no assumption on the data it protects, nor does it
require the encoder and the decoder to analyze the content of
the packets. HIRT processes SRv6 packets as payload without
compromising the security of communication. Alternatives
to packet-level protection (e.g., a transport connection-level
protection) would require additional state on both the encoder
and decoder and are not explored in this paper.

Each source symbol is uniquely identified by an Encoding
Symbol ID (ESI), a 32-bits value incremented by one for each
source symbol protected by the encoder. To carry the ESI, the
encoder adds an SRv6 Type-Length-Value (TLV) option [32].
Routers that do not recognize the TLV type skip it during
the packet processing. This allows HIRT to be carried over
transparently by standard routers.

Repair symbols carry the repair FEC payload, i.e., the re-
dundancy data used to recover lost packets. They are generated
by the encoder and sent towards the decoder (Figure 1). They
are not forwarded outside the tunnel. The repair payload is
encapsulated in an SRv6 header to be routed to the decoder.
This forms the repair packet. A repair symbol is also uniquely
identified, using the ESI of the last source symbol it protects.
It also contains the number of source symbols protected by



the current repair symbol, as well FEC scheme-specific infor-
mation, e.g., the RLC seed used to generate the coefficients of
the repair symbol (not shown in the Figure). Finally, the SRv6
TLV of repair packets contains a field indicating which FEC
algorithm was used to generate the repair symbols. HIRT only
implements RLC but network operators could implement, e.g.,
XOR-based algorithms.

IV. ADAPTIVE FEC

The use of Forward Erasure Correction involves a trade-off
between transmission delay and bandwidth consumption [49].
Adding redundancy increases the probability of recovering lost
data, reducing the transmission delay, but it also increases the
bandwidth usage. Several works suggest schemes to control
and dynamically adapt the coding rate of FEC based on
feedback [13], [26], [50], [51]. However, these designs focus
on providing (partial or full) reliability at the cost of added
delay and do not prioritize efficient packet processing. We
design an adaptive algorithm to schedule repair symbols with
three considerations: (i) it must perform well in heterogeneous
networks, such as those with varying delay or reliability (e.g.,
satellite networks); (ii) the resources required to generate
the feedback must remain adequate to ensure a high-speed
delivery; and (iii) no assumptions can be made about the
protected traffic. For example, it may be a bulk download,
a video conference call or a mix of both.

Our system leverages feedback from the decoder to the
encoder to estimate the loss events in the tunnel. The amount
of generated repair symbols is adjusted using this estima-
tion. HIRT leverages the sliding-window RLC algorithm from
RFC8681 [41] and adapts the step size according to the
following adaptive algorithm.

A. Loss estimation and feedback

The decoder sends feedback messages to the encoder inside
the data plane. Concretely, it regularly sends an SRv6 packet
with feedback information inside an SRv6 TLV option [32].
These messages contain the estimated loss characteristics
from the decoder’s viewpoint since the last feedback. Each
source symbol is identified with a monotonically increasing
Encoding Symbol ID (ESI). The decoder marks a packet as
lost if it sees a gap in the ESI sequence. The question of
packet reordering is discussed in Section V. Feedbacks are
computed and forwarded each nf packets. The decoder returns
the window size nf and the number of missing ESI in that
window.

With this feedback, the encoder adjusts its estimation of the
mean loss inside the tunnel, µ̂. The algorithm uses a moving
average update to give more importance on recent estimations
to adjust to the heterogeneity of the network. The encoder
also computes the variance in the mean number of losses, σ̂,
with these values. The updated loss estimation solves the first
requirement.

This feedback is easy to compute both for the encoder and
the decoder (a bitmap of size nf is sufficient to store the state
of received ESI). Moreover, this feedback does not contain

sensitive data: a missing feedback (e.g., due to transmission
error) does not block the encoder from producing FEC re-
pair packets. This solves the second requirement. Finally, no
assumptions are made on the protected traffic, except that we
analyze the network condition based only on protected packets.

B. Adaptive algorithm

The encoder generates repair symbols to compensate the
estimated loss distribution thanks to the feedback mechanism.
As the number of repair packets to generate is based on the
previous estimation (and thus computed a priori), the encoder
may generate too much or too few symbols. The first case
results in wasted bandwidth; the latter in the impossibility to
recover all lost symbols.

To compensate for the µ̂ estimated symbols that will be
dropped within the next nf sent source symbols, the encoder
generates ⌈µ̂ ∗ nf⌉ repair symbols every nf source symbols.
The variance σ̂ is taken into account in this computation.

Two strategies exist to schedule the generation of repair
packets. First, they can either be generated all at once, every
nf source symbols. In that case, if one of the first source
symbols of the window is lost, the decoder must wait for
the reception of all remaining source and repair symbols to
be able to recover the loss. This can potentially add a great
amount of delay for the receiving end-host. The other strategy
is to interleave repair symbols with the data. Evaluations of
Forward Erasure Correction methods showed that the second
strategy provides lower delay to recover lost source symbols
without impacting the quality of recovery [52]. HIRT relies
on the second strategy using the RLC coding scheme as it can
generate repair symbols interleaved with the source symbols.

The scheduler thus generates nf repair packets every ⌈ nf

µ̂+σ̂ ⌉
source symbols. HIRT interleaves these repair packets and
generates a repair symbol with a step of ⌈ 1

µ̂+σ̂ ⌉ source
symbols. The step may be adjusted every received feedback.

V. HIGH PERFORMANCE SOFTWARE IMPLEMENTATION

A natural approach for network-layer Forward Erasure Cor-
rection with high-speed packet processing and recovery is to
implement it in hardware directly, e.g., in P4 [53]. However,
RLC requires computing linear combination of packets (at
the encoder) and solving linear systems of equations (at the
decoder), which is complex and tedious to be efficiently
implemented in hardware. Simpler algorithms could be im-
plemented, such as the XOR erasure code, but its efficiency
has been demonstrated to be low [12] and we do not consider
it in this work. Maelstrom [43] explores multi-layered XOR
codes, which can protect burst losses at the cost of constant
and significant overhead. Comparison between Maelstrom and
HIRT is further explored in Section VIII.

HIRT leverages FastClick [42], an enhanced version of the
Click modular router toolkit [54] to build software network
functions supporting traffic above 100Gbps. FastClick in-
tegrates kernel bypass I/O such as DPDK [55] and packet
batching. With FastClick, one defines packet processing as
a graph of smaller components that run in user-space. We
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Figure 2. Sliding window coding with w = 4 (window size) and µ̂ = 0.5
(mean loss estimation) resulting in a step of 2 between two repair symbols.

extended the toolkit to support basic SRv6 processing. This
required ∼330 lines of code (LOC). FEC must be done
carefully as it can be CPU-intensive to compute the repair
symbols and to solve the RLC linear system. Packets that are
not protected by the tunnel (i.e., packets without the SRv6
header with the encoder and decoder SIDs) are processed and
forwarded without entering the HIRT component in FastClick.
The whole implementation required ∼2300 LOC.

FEC sliding window. Conventional FEC approaches use a
constant and limited FEC window size, i.e., all repair symbols
protect the same number of source symbols. As detailed in
Section IV, repair symbols are interleaved with the source
symbols they protect. HIRT uses a constant sliding window
of size w, i.e., nf = w all the time. At the regime, a new
data entering the window removes the oldest symbol from it.
Figure 2 shows an example of six source symbols protected
by two repair symbols. Repair R1 and R2 respectively protect
sources S1→4 and S3→6. Increasing w improves recovery ca-
pabilities at the cost of more processing each time a new repair
packet is generated, and a linear system is built. Carefully
choosing the right value of w thus brings a trade-off between
recovery capability and processing performance.

DPDK. Our implementation uses DPDK [55]. The toolkit
provides kernel bypass to speed up the packet processing in
user-space [42]. DPDK reserves beforehand a pool of buffers
for the packets, thus canceling the cost of memory allocation.
Our solution also uses batching of 32 packets. These two
features are already supported in FastClick.

AVX instruction. RLC is computationally intensive. It uses
costly Galois Field operations to work with integer numbers
in our equation systems. To alleviate the cost, we use the
moepgf C library [56] which uses AVX SIMD instructions.

Zero copy. The source symbols are kept in memory to
generate the repair symbols (at the encoder) and construct the
linear system to recover lost packets (at the decoder). Instead
of copying the packet in separate buffers, our implementation
keeps a pointer to the packet buffer and updates the DPDK
buffer’s reference counter. Memory is only dropped once every
reference to the same packet are no longer valid, i.e., the packet
has been processed and is removed from the FEC buffers.
The packet may be modified while being kept by reference
counting. It happens when the SRv6 header is modified after
the encoding or decoding operation is applied, e.g., to change
the IPv6 Destination Header field and decrement the Hop
Limit. FastClick prevents concurrent writing by automatically
copying shared packets when an attempt to get a writable
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Figure 3. Multithreading architecture of our implementation with 3 parallel
streams. The Encoder distributes the incoming packets among the encoder
streams e1, e2 and e3. Each encoder stream ei communicates with its decoder
stream di. All packets are independently sent with the same tunnel but each
stream is independent from each other. At the end of the decoding streams
(d), the traffic is aggregated and forwarded. The curved arrows between the
eis and dis represent the streams.

reference to a shared packet is made. This adds unnecessary
copies that slow down the performance. Instead, HIRT only
keeps a copy of the fields that might be modified and manually
fixes the modified buffer upon repair symbol generation and
system solving. The size of these fields does not exceed 40
bytes. This trick allows disabling the copy-on-write security
of FastClick and only keep one copy for each packet.

Multithread architecture. Our implementation supports
multithreading. The bottleneck operations are the generation
of the repair symbols, and the construction and the solving of
the linear system. When a CPU core performs one of these
operations, it cannot process other incoming packets in its
queue. Our implementation scales by using several cores in
parallel. For this, we split the traffic into parallel streams.

Figure 3 presents the multithread architecture with 3 con-
current processing threads. At the encoder, the network in-
terface controller (NIC) distributes incoming packets among
the available CPU cores. This distribution uses RSS++ [57]
to spread the load equitably among the cores and dynamically
scale according to the input load. RSS++ maps packets from
each flow to the same CPU core to avoid possible reordering.

There is a one-to-one mapping between an encoding thread
and an available CPU core. A Stream ID is assigned to each
encoding thread. There is no communication between encod-
ing threads with distinct Stream IDs. Each thread processes its
packets and encodes them independently of the other threads.
For example, each stream uses its own Encoding Symbol
ID (ESI) space. This architecture creates several concurrent
streams inside HIRT, as represented in Figure 3. The Stream
ID of a source or repair symbol is carried inside SRv6 TLV of
the source, repair and feedback packets. The decoder uses the
same architecture. It uses the Stream ID from the TLV to map
the symbol to the correct decoding CPU core. The system
constructions and resolutions are also independent between
streams. The feedback messages are also stream-dependent.
Each stream has its own estimation of the loss pattern inside
the tunnel. This architecture enables to arbitrarily increase the
number of threads and Stream IDs without contention of a
single performance bottleneck for the FEC computation.

Overloading detection. A vicious circle may occur in case
of severe losses in the tunnel. In that scenario, the encoder de-
cides to generate numerous repair symbols in a short amount of



time, increasing its CPU load. If the load reaches the maximal
capacity, the router will have to drop incoming packets, thus
creating losses at the tunnel ingress. This would deteriorate the
performance of the applications using the tunnel. The decoder
may also become overloaded in case of severe losses as it
tries to solve numerous linear systems. Similarly, it would
drop packets at its ingress, thus creating more losses inside
the tunnel. These drops will increase the estimated network
losses. In response to this additional loss, the encoder will
decide to generate more repair symbols, keeping increasing
the CPU load at the decoder.

Our implementation alleviates this situation by randomly
skipping repair symbols generation and system solving if
needed. When a stream CPU core sees its load reaching a
defined threshold value, it starts to randomly skip these events
with a probability proportional to the current CPU overload.
Other methods could be implemented to, for example, gen-
uinely decide which linear system the decoder should skip
instead of randomly selecting one system to discard. However,
this situation occurs when the CPU load is high, and it should
not require additional resources to make a decision.

Loss detection and packet reordering. The strategy to
consider a packet as lost has an impact on the performance
of the implementation. A missing ESI in the source symbol
buffer is interpreted as a lost packet. A repair symbol is always
sent by the encoder after the source symbols it protects, as
illustrated in Figure 1. Upon reception of the repair symbol,
a missing ESI can only be due to losses or reordering.
Intermediate routers in the protection tunnel can introduce
reordering. A study highlighted that such events are rare but
the average out-of-order length is of 8 packets [58]. If a source
symbol is not lost and simply out-of-order, the decoder might
trigger the recovery mechanism, increasing the CPU load. Two
different strategies can be implemented to counter this side
effect. First, upon reception of a repair symbol, the decoder
can postpone the recovery mechanism for a few packets. The
decoder could receive out-of-order packets and detect that
a recovery is not necessary anymore. The second approach
is to consider that out-of-order source symbols are already
delayed for the application. In that case, recovering this source
symbol means that it will be sent faster out of the tunnel
compared to the first solution because the tunnel does not need
to wait for the reception of the out-of-order packet. However,
it adds CPU load because additional recoveries are triggered.
Our implementation uses the second approach to decrease the
impact of reordered packets, thus reducing the overall jitter
for the applications using HIRT.

VI. BENCHMARKS

We assess the performance of HIRT at high speed to show
that a carefully designed prototype, even when implemented in
software, can support >50Gbps of traffic under heavy losses
using a few commodity CPU cores. Throughout the experi-
ments, we set w = 200. We experimentally found that a higher
value does not significantly improve the recovering capabilities
while the processing overhead decreases the performances
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at high-speed. We rely on the CloudLab infrastructure [59]
to benchmark our implementation. We use a linear topology
composed of five nodes, respectively the server, the encoder,
a node emulating losses, the decoder and the client. All nodes
are equipped with x86 AMD EPYC 7452 processors. Each
node has 32 CPU cores. The L1, L2 and L3 cache layers are
respectively 32 kB, 512 kB and 16 384 kB long. All nodes are
connected through 100Gbps links inside the Utah cluster. We
evaluate the limits of HIRT in terms of throughput.

Offered load. Figure 4 shows the percentage of packets
received by the client given an increasing offered load (using
1024 bytes UDP packets). The baseline curve (i.e., without
losses nor HIRT) shows that we start observing losses before
an offered load of 80Gbps. This result shows that we cannot
fully utilize the available 100Gbps bandwidth and that the
machines are the bottleneck of the experiment. When induc-
ing 3% of packets uniformly dropped, HIRT recovers all
dropped packets below 60Gbps. When the CPU load of the
routers increases, the amount of recovered packets is capped
as explained in Section V to avoid dropping packets due to
CPU contention.

Above 60Gbps, the client receives fewer packets with HIRT
compared to the Baseline+Losses situation, i.e., coding
nodes drop packets in the tunnel because the FEC processing
increases too much the CPU utilization. We argue that the
CloudLab servers used in this experiment are the bottleneck.
First, thanks to its multithreading architecture, providing more
computing cores should allow HIRT to scale to even more
offered payload. FastClick [42] and RSS++ [57] can sustain
more than 100Gbps traffic while the link capacity between the
CloudLab nodes is not the bottleneck here. We believe that,
with more advanced servers with more CPU cores available
for processing, one could push the limits of HIRT to more
than 100Gbps. Additionally, HIRT supports only 10Gbps less
traffic compared to the Baseline curve to recover 3% of losses.
With fewer losses, we expect HIRT to sustain even more traffic
and close the gap compared to the baseline. The drop rate of
3% is chosen to understand the performance limits of HIRT.

Impact of the optimizations. Figure 5 shows the average
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Figure 6. Experimental setup using the Starlink access. The Server and
Encoder are run on the same physical machine using different network
namespaces; similarly for Client and Decoder. The Encoder and Decoder
are respectively the CE and PE.

number of CPU cycles per packets of HIRT for the decoding
operation with the optimizations mentioned in Section V. We
increase the uniform drop rate from 0% to 5%. Each sub-
sequent curve adds an optimization compared to the previous
one, e.g., the +SIMD curve results from enabling DPDK, the
Zero Copy and the SIMD optimizations. Without optimiza-
tion, we observe that the number of CPU cycles remains
constant as the uniform drop rate increases, yet it should
require more work. This indicates that, without optimization,
the implementation struggles to sustain high traffic, even in
the absence of losses. DPDK provides the biggest performance
boost, as already established by previous research [42]. The
number of cycles increases with the drop rate as more work
must be done to recover lost packets. The technique to allow
zero-copy enables an almost constant 600 cycles improvement.
This is independent of the number of losses since the zero-
copy only applies to received packets. Using SIMD instruc-
tions provides strong performance gain under heavy losses.
With no packet drop, there is nearly no packet recovery and
SIMD instructions do not accelerate processing. However, as
the drop rate increases, the speedup rises towards 3× with 5%
of packets being dropped because more linear systems must be
solved. With all optimizations enabled, the number of CPU
cycles decreases by a factor between 3 and 9 depending
on the loss percentage.

VII. EVALUATION IN A REAL NETWORK

We demonstrate the benefits of HIRT in a real-world
environment using the Starlink [60] communication system
with HTTP and NFS benchmarks. Starlink is a new Low
Earth Orbit (LEO) satellite communication system that aims to
provide high connectivity. Starlink is a rising topic of interest
in the research community [9], [61]–[63]. More particularly,
measurements have shown that this medium generates losses
that are not induced by congestion [9]. The study measured
a mean loss ratio of ∼0.45%, with burst of losses of at
most 9 packets in 75% of measurements under light traffic.
These losses can be recovered by an FEC algorithm, as the
overhead induced by the repair packets should not contribute
in increasing the number of data losses in the network.

Figure 6 illustrates the experimental setup. The server and
the encoder share the same machine with different network
namespaces; this is similar for the decoder and the client. The
encoder is directly connected to the Starlink access point; the
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Figure 7. HTTP request completion time CDF for 10 kB responses.

decoder is connected to our university campus network. The
RTT is ∼50ms, and we found similar loss conditions to [9].

A. HTTP requests over Starlink

We show how HIRT transparently protects a VPN traffic
over Starlink. Such service can be provided to any VPN user
to increase the reliability of the service, independently of
their protocols and applications. Additionally, using a VPN
inside HIRT shows that the tunnel can recover losses without
accessing the protected data.

We use the Wireguard VPN [64] to leverage its Linux kernel
implementation. We start an HTTP server on the server, and
run a wrk [65] benchmark for 20 minutes. Wrk is an HTTP
benchmark tool designed to evaluate the responsiveness of a
server. We analyze the impact of the losses on the request
completion time (RCT). Each benchmark consists in 5 parallel
request flows to avoid congesting the access link. We run each
benchmark individually.

HIRT reduces the last percentile of 10 kB HTTP
request completion times by a factor of 2. Figure 7 shows
the distribution of the request completion time (RCT) for
responses of 10 kB, i.e., responses that can be sent within a
single round-trip. We compare the RCT between HIRT and a
no-FEC solution only relying on retransmissions (the Baseline
curve). The left sub-figure uses regular TCP as the transport
protocol. As Starlink exposes <1% losses, the impact of
packet erasure only appears around the last percentile of the
distribution. We observe a similar RCT for lower percentiles
and only show the last percentile latency. The Baseline curve
suffers from the losses and the retransmissions increase the
request completion time. It increases up to more than 1 s for
almost 1% of these requests, whereas the median over all
data is ∼100ms. As expected, HIRT decreases the RCT for
the 99th percentile from 1 s to 500ms. The measured overhead
is 9.25%. As we do not fully utilize the link, we do not expect
results to vary between upload and download Starlink access.

HIRT protects traffic independently of the underlying
protocols. We also used a version of wrk [66] which uses
the picoquic [67] implementation of QUIC [6] instead of
TCP for the HTTP requests. The right part of Figure 7 shows
the request completion time for 10 kB HTTP responses using
QUIC. Again, HIRT does not harm the mean RCT, and we
only show the last percentile distribution. HIRT decreases the
99.5th RCT from 1 s to 500ms.

Both the QUIC and TCP servers used CUBIC as their
congestion control algorithm. The observed losses contribute
to a decrease in the congestion window. However, for small
HTTP responses such as 10 kB, these losses do not harmfully



impact this window. The initial congestion window of the
Linux TCP implementation is 10 packets, which is sufficient
to transmit all the response within a single flight. Packet losses
in this case increase the request completion time by one up to
a few RTTs, but no subsequent packet will be impacted by a
congestion window decrease.

By hiding the losses from the transport protocol, HIRT
decreases the median RCT of longer HTTP responses
by 20% over Starlink. Longer HTTP responses involving
multiple packet flights are more impacted by packet losses
when the transport protocol uses a loss-based congestion con-
troller. Improvements in the loss recovery mechanism and its
impact on the congestion control have been added to TCP [68].
However, loss-based congestion control algorithms use packet
losses as an indicator of congestion. The erasures caused by
Starlink can negatively impact the congestion window of the
sender even if they are not due to congestion.

Figure 8 shows the impact of HIRT on the request comple-
tion time of TCP/HTTP responses of 1MB (left sub-figure).
Both endpoints use CUBIC. Contrary to the 10 kB requests,
we see a positive impact of FEC considering all experiments,
not just the last percentile, even if the losses exhibited by
Starlink impact less than 1% of the packets. With HIRT, the
median is lower (1.9 s compared to 2.36 s, 19% improvement).
By recovering erased packets at the network layer, the TCP
congestion controller is unaware of these losses. Thus, it
avoids decreasing its congestion window. This increases the
overall throughput compared to the baseline.

Figure 8 also reports the congestion window (CWND) of the
server at the end of each HTTP response. As expected, it
remains higher using FEC thanks to the recovered packets.
Since CUBIC is a loss-based congestion control algorithm
(CCA), hiding losses has a positive impact on the evolution
of the source bit-rate. We expect less significant results with a
delay-based CCA such as BBR. Finally, we expect the main
outcomes from Figure 8 to remain identical with QUIC instead
of TCP as well as with longer HTTP responses.

By knowing the characteristics of Starlink, we know that
an important part of these observed losses are not due to
congestion, and the transport congestion controller can make
better decisions. However, as discussed in Section II, one
cannot always guarantee that losses are transmission errors. To
alleviate this situation, we run HIRT where we mark recov-
ered packets with the Explicit Congestion Notification (ECN)
flags [46]. With this notification, the tunnel still recovers pack-
ets but does not hide the losses anymore. This is represented
by the HIRT+ECN curve from Figure 8. Both the RCT and
the CWND are similar to the baseline. We even notice that
the RCT is marginally higher when we activate ECN. We
believe that the 5.4 Linux TCP implementation used by the
server is more optimized to handle packet losses than ECN-
flagged packets. An inspection of its source code confirmed
that the TCP stack enters a congestion reduction phase for each
received ECN packet, thus shrinking the congestion window.
A more optimized control of ECN might improve the results.
However, we note that for the last 10th percentiles, HIRT+ECN
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Figure 9. Read (left) and write (right) latency results of the fio benchmark.

improves the latency by ∼200ms compared to the baseline.
B. File system benchmark

Network File System (NFS) is an important application for
remote workers who need to access files on enterprise servers.
As they require interactions with humans, these are latency
sensitive. Increased latency hinders the user experience. A
FEC protection can improve the tail latency of these appli-
cations. However, due to the low traffic because of the human
interaction, implementing FEC in the application or relying on
the transport layer would require a huge overhead to recover
from lost packets. Moreover, NFS can use TCP or UDP. With
HIRT, applications benefit from traffic aggregation and from
the FEC protection independently of the transport protocol.

We show how an NFS application is impacted by the
increased latency due to the losses of Starlink. We consider
such use-case realistic as Starlink aims to provide internet
connectivity to remote places in the world. Optimizing the
delay of such applications is mandatory with the spread of
homeworking today. We start an NFS server on the machine
in our university campus and start a fio [69] benchmark
on the Client from Figure 6. fio executes sequential read
and write operations using NFS and measures the latency
of each request. We run the benchmark for 20min with
randomly read/write sequences of 5MB files and a block-
size of 4 kB. The objective is not to objectively evaluate the
NFS disk capabilities, but see the relative impact of losses and
HIRT on the latency. Figure 9 shows the CDF distribution
of the latency of each read (left) and write (right) request
from the fio benchmark. We see that the improvements of
HIRT are significant, as more than 97% of the samples
present a latency below 10 s. Without HIRT, only ∼75%
of the samples are completed within this time. For the 99th

percentile, HIRT improves the latency by 14%.

VIII. COMPARISON WITH MAELSTROM

Maelstrom [43] is the closest related work to HIRT. It
suggests deploying proxies between DCs and WANs and to
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Figure 11. Simulation with Gilbert-Elliot drop model.

inject FEC packets between unmodified packets. It proposes
to encode packets in multiple layers. For example, the first
layer encodes every packet, while subsequent layers with,
e.g., an interleaving of 4 will encode 4 streams of 1 packet
every 4 packets. The trivia is to allow recovery of dropped
bursts. All layers use the XOR coding scheme to generate the
repair symbols. We note the following differences between
Maelstrom and HIRT: (i) Maelstrom suggests constant-rate
redundancy generation inside the tunnel. It does not adapt
to the network condition. As a result, Maelstrom may send
too many or too few repair packets, respectively causing
bandwidth waste or impossibility to recover the majority of
lost source symbols; (ii) Maelstrom design does not focus on
high-speed packet processing and could not sustain more than
700Mbps [43] of protected traffic in 2011. The throughput
should be higher with more recent machines, but we could
not test it as its source code is not available.

We compare in this section the recovering capabilities of
HIRT with Maelstrom. We build a simulator with the two
methods to compare their behavior under the same patterns of
losses. Finally, we implement the encoder and decoder com-
ponents of HIRT and Maelstrom. Between these two nodes,
we add a deterministic packet dropper simulating losses using
a uniform and a Gilbert-Eliott [70] drop model. The simulator
and implementation of HIRT and Maelstrom required ∼2500
LOC. We reuse the RLC library used inside FastClick for
HIRT. We tune Maelstrom with different interleaves and win-
dow sizes to trade-off overhead with recovering capabilities.
In Figure 10 and 11, M:X-Y-Z:W means Maelstrom with
interleaves I = (X,Y,Z) and a window W.

Uniform drop model. We first compare HIRT and Mael-
strom by increasing the uniform drop rate in Figure 10.

We measure the overhead, i.e., the ratio of repair packets
injected to the network compared to the number of source
symbols (upper sub-figure), and the ratio of recovered packets,
i.e., the number of recovered symbols with respect to the
number of losses (lower sub-figure). Maelstrom does not adapt
to the uniform drop rate since it uses static interleaving.
Figure 10 shows that HIRT correctly adapts to the observed
losses, and provides lower overhead than Maelstrom while
still recovering erasures. For example, with a drop rate of
0.5%, HIRT recovers all erased symbols with an overhead
of 3.3% while M:1-20:20 only recovers 89% of them for
an overhead of 5%. With more layers (e.g., M:1-20-40:20),
Maelstrom recovers almost all lost symbols at the cost of a
higher and constant overhead compared to HIRT. Even if RLC
is more computationally intensive, its recovering capabilities
outperform Maelstrom’s method.

Gilbert-Eliott model. This model enables to emulate burst
losses by running a two-sates Markov model. Packets are
forwarded if the model lies in the Good state, and dropped if it
is in the Bad state. The probability to go from the Good to the
Bad state is p; the probability to go from the Bad to the Good
state is r. We first use an experimental design [71] approach
with 100 points to explore the space of possible scenarios.
We use the ranges p ∈ [0.0001, 0.01] and r ∈ [0.10, 0.50].
Figure 11a presents the CDFs of the overhead (top) and ratio
of recovered packets (bottom) in this setup.

The impact of burst losses on the performance of Maelstrom
is significant, as with I = (1, 20) and a window of 20, more
than 50% of the experiments recover less than 75% of erased
packets. On the other hand, HIRT correctly adapts to the loss
rate thanks to the adaptive algorithm. More than 95% of erased
packets are recovered in 80% of the experiments. Figure 11a
also presents how Maelstrom performs with I = (1, 20, 40)
and a window of 8 packets, values similar to the original
paper [43]. In that setup, the overhead is 34%, which is
above HIRT 99% of the time. However, the ratio of recovered
packets of Maelstrom remain almost always lower than HIRT.

Figure 11b shows results where we approximate Starlink’s
loss model [60]; we set r = 1

3 and p = 0.00151. Again, HIRT
outperforms Maelstrom. Thanks to its adaptive scheduling
and the Convolutional RLC erasure code, HIRT recovers
many more erased packets than Maelstrom while ensuring
lower overhead. As the original implementation of Mael-
strom is not publicly available, we could not compare its
performance at high-speed. Even if we could expect a higher
throughput than 700Mbps [43] nowadays, we still believe that
the architecture of HIRT and the optimizations done would
sustain a higher throughput than Maelstrom.

IX. RELATED WORK

Network-layer coding. Sundararajan et al. [72] suggest a
network coding extension of TCP for multicast and multi-
path traffic protection. The FEC mechanism is implemented
between TCP and the network layer, and packet coding can
be performed by intermediate routers to recover from packet
erasures. Our approach is completely agnostic of the transport



layer of the protected packets. It leverages the SRv6 network
programming [34] instead of extending the TCP stack to
deploy the solution. Moreover, our work focuses on a design
and implementation that can protect traffic at high speed.

Loss recovery. Another option to alleviate losses without
FEC is to send a priori several times a same packet. Du-
plicating the traffic would increase too much the bandwidth
consumption and CPU usage. Selective Loss Prevention [73]
proposes a new algorithm to only duplicate selected packets
in a TCP flow, such as packets with the SYN and PSH set. It
decreases the overhead and improves the performance in lossy
environment. HIRT suggests an underlying-layer-independent
tunnel that can recover any packet in the tunnel. The FEC
redundancy offers a protection covering a range of packets
at the cost of a higher CPU usage to encode and decode the
repair symbols.

AC-RLNC [13] proposes an adaptive and causal network
coding with feedback algorithm for multipath and multi-hop
communications. Using FEC, AC-RLNC adapts its coding rate
leveraging feedback sent by the end-host every RTT. Repair
symbols are sent a priori using this estimation, and a poste-
riori with feedback to reach reliability. No implementation of
AC-RLNC could be found for performance comparison.

Congestion avoidance. Microburst is a known cause of
burst loss in datacenters [74]. Deflection is a mechanism that
temporally changes a packet’s port to re-route the packet if
it enters a full buffer to prevent a packet loss from such
microbursts. Deflection adds reordering as some packets may
be re-routed and not subsequent packets of the same flow.
Vertigo [75] proposes a transport-independent extension in
end-host stacks to recover the original packet order before
handing over the packet flow to the transport protocol. Even
if this is not directly related to HIRT, it shows that both packet
reordering and packet losses occur in datacenters. We suggest
an approach that can be combined with Vertigo.

Active networking. Active Congestion Control (ACC)
leverages active networking to indicate to each router in
the network how to respond to congestion [76]. By actively
including the routers in the congestion control, ACC decreases
the reaction time in wide area networks. Leveraging a similar
mechanism could improve the resilience of HIRT in case of
congestion. However, it would require per-flow state to work
well with aggregated traffic.

An architecture for active networking suggested the use
of pre-defined functions that could be directly called by the
application [77]. The authors then proposed to implement
congestion-related functions in the network and let the applica-
tions choose how the routers should react whether congestion
arises. The applications cannot create new functions inside
the network but only use the provided API. This approach is
similar to SRv6 network programming [34]. HIRT leverages
the network programming paradigm to let the applications
dynamically ask protection inside the tunnel.

Data Center Networks (DCN). In ReWAN [78], authors
suggest a similar idea using inter-DC scheme which imple-
ments recovery as a service. End hosts notify losses and get

recovered packets. Most practical details, such as which source
packets should be snooped to the repair service are left for
future work. In a later proposal [79] authors measured inter-
DC loss characteristics and pose that a combination of one-
hop detour routing and FEC might allow recovering inter-DC
losses. This scenario is enabled by our proposal.

CloudBurst [80] proposes to combine the use of FEC and
multipath in datacenter networks. They implement a transport
library, allowing users to transmit messages over multiple path
inside a datacenter network. Our proposal achieves similar
goal without host and application modification.

eBPF implementation. We also considered an eBPF imple-
mentation of network-layer FEC [81]. Due to the limitations of
the eBPF verifier, it was impossible to implement the Random
Linear Codes (RLC) in eBPF byte code. The generation of
each repair symbol and the creation and solving of linear
systems of equations during the recovery required regular
communication with a user-space process, which slowed down
the performance of the approach. This prototype could only
protect traffic at a few megabits per second.

X. DISCUSSION AND CONCLUSIONS

This paper presents HIRT, a transparent robust tunnel
leveraging network coding to recover lost packets at high
speed between two nodes in a network using an adaptive
algorithm. We presented the design and implementation within
IPv6 Segment Routing. The adaptive algorithm reacts to the
estimated loss patterns to adjust the amount of redundancy
packets inside the tunnel. The results showed that HIRT can
withstand more than 50Gbps of traffic and recover packets
in case of severe loss. Thanks to its stream abstraction, our
implementation scales up with several threads to support even
more traffic. We showed through experiences in a real network
exposing transmission errors, Starlink, that the tail latency of
time-sensitive applications can be decreased.

In future work, we will study how an operator can change
the traffic class of repair symbols to ensure it only uses spare
bandwidth. Deploying HIRT on L4S-enabled networks also
represent interesting perspectives of future work [82]. The
ECN-marking behavior of HIRT naturally blends with L4S
congestion controllers such as TCP Prague [83]. Losses occur-
ring in non-congested networks can indeed be recovered and
ECN-marked with only a negligible impact on the congestion
window. Future work also includes evaluating HIRT with real-
time applications, web browsing emulation, and comparison
with transport-layer FEC such as FlEC [16]. We will also
consider how HIRT behaves environments with congestion-
induced losses and with fixed wireless access (FWA) mediums.
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