IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

2827

Leveraging eBPF to Make TCP Path-Aware

Mathieu Jadin™, Quentin De Coninck

and Olivier Bonaventure

Abstract—The Transmission Control Protocol (TCP) is one of
the key Internet protocols. It is used by a broad range of applica-
tions. TCP was designed when there was typically a single path
between a client and a server. Today’s networks provide higher
path diversity, yet TCP still only uses the single path selected
by the network layer. This limits the ability of TCP to react to
events such as interdomain failures or highly congested peering
links. We propose the TCP Path Changer (TPC), a set of eBPF
programs that are incorporated into the Linux TCP/IP stack to
make it more agile. To illustrate the benefits of our approach, we
first demonstrate that TPC can quickly reroute an ongoing TCP
connection around a failure. We then show that TPC can also
monitor the round-trip-time of active TCP connections and auto-
matically reroute them if it becomes too high. Our evaluation of
TPC in emulated networks evidences the significant performance
benefits of a path-aware transport protocol.

Index Terms—TCP, eBPF, IPv6 segment routing.

I. INTRODUCTION

HE TRANSMISSION Control Protocol (TCP) was
designed in the 1970s. Yet, despite its old age, TCP
remains the dominant transport protocol in today’s Internet,
controlling more than 90% of the overall network traffic [1].
The protocol and its implementations have evolved during the
last decades. While today’s TCP implementations still use the
original wire format [2], they include various improvements,
including congestion control techniques [3], [4], support for
larger windows [5], selective acknowledgments [6], and more.
TCP reflects the layering principle and considers the under-
lying network layer as a blackbox that exposes IP addresses
to the transport layer in which TCP operates. A TCP connec-
tion is always bound to the IP addresses of the client and the
server. TCP is agnostic to the network path between the com-
municating hosts that the packets traverse and, in particular,
neither selects nor influences this path in any way. As TCP
performance can be adversely affected by packet reordering,
most networks avoid spreading packets belonging to the same
flow across different paths [7] (even though recent advances
such as RACK make TCP less sensitive to reordering [8]).
Two main types of routing events induce path changes that can

Manuscript received 5 February 2022; revised 28 April 2022; accepted
4 May 2022. Date of publication 10 May 2022; date of current version
12 October 2022. The work of Quentin De Coninck was supported by FNRS.
The associate editor coordinating the review of this article and approving it
for publication was C. Avin. (Corresponding author: Mathieu Jadin.)

Mathieu Jadin, Louis Navarre, and Olivier Bonaventure are with
ICTEAM, UCLouvain, 1348 Ottignies-Louvain-la-Neuve, Belgium
(e-mail: mathieu.jadin@uclouvain.be; louis.navarre @uclouvain.be;
olivier.bonaventure @uclouvain.be).

Quentin De Coninck is with ICTEAM, UCLouvain, 1348 Ottignies-
Louvain-la-Neuve, Belgium (e-mail: quentin.deconinck @uclouvain.be).

Michael Schapira is with the School of Computer Science and Engineering,
Hebrew University of Jerusalem, Jerusalem 9190501, Israel (e-mail:
schapiram @cs.huji.ac.il).

Digital Object Identifier 10.1109/TNSM.2022.3174138

, Louis Navarre

, Michael Schapira™,
, Member, IEEE

impact TCP connections: (i) link or node failures [9], [10] and
(i) changes due to in-network traffic engineering [11]. TCP
reacts to path changes induced by such events by adjusting
its round-trip time estimation, retransmitting lost packets, and
possibly adjusting its congestion window.

When TCP was designed, networks supported one path
for a given source-destination pair [12] and so TCP’s role
was to adapt its transmission rate to the traffic conditions
on this path. Today’s networks support a higher number of
paths that can potentially be used by a TCP connection
between two hosts [13]. In particular, many networks pro-
vide multiple equal cost paths towards internal destinations,
and routers load-balance packets from different TCP con-
nections across these paths [7]. Measurement studies show
that although equal cost paths are supposed, in principle,
to be comparable, performance-wise, this is not always the
case [11], [14]. The specific path traversed by the packets
of a TCP connection in such networks mainly depends on
the client’s selected source port (since the IP addresses and
server port are fixed). Researchers have proposed to change
the client’s TCP port [15], [16] to influence a TCP connec-
tion’s path, but this solution has not been widely adopted. A
similar approach was proposed for the context of Multipath
TCP [17] in datacenters [18].

Using the TCP client ports [15], [18] or other packet
fields [16] to indirectly influence a TCP connection’s path
is fragile. For this reason, the designers of IPv4 and IPv6
proposed a more explicit solution with loose source rout-
ing [19], [20]. Unfortunately, this approach was deprecated
due to security concerns [21], [22]. Recently, the Internet
Engineering Task Force revisited this topic and adopted the
Segment Routing architecture [23], [24]. Segment Routing is
a modern variant of source routing and can be applied in
MPLS and IPv6 networks. Specifically, IPv6 Segment Routing
(SRv6) enables endhosts to select the path followed by their
packets. With Segment Routing, a network path becomes a
succession of shortest paths that are encoded as a loose source
route in the packet header. Segment Routing has already been
applied to address a variety of networking problems, ranging
from traffic engineering [25]-[27] to fast restoration [28].

We leverage Segment Routing and the expressiveness
afforded by extended Berkeley Packet Filter (eBPF) program-
ming [29] to demonstrate how TCP can become path-aware,
i.e., making TCP able to react to network-level events not only
by modulating the transmission rate but also by selecting an
alternate path. eBPF is a virtual machine included in the Linux
kernel! that can be used to tune the Linux TCP/IP stack. We

lAlthough we focus on Linux in this paper, we note that there are ongoing
efforts to also port eBPF into Microsoft Windows [30] and FreeBSD [31].

1932-4537 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on August 06,2025 at 09:42:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0642-6806
https://orcid.org/0000-0001-6483-3157
https://orcid.org/0000-0001-8533-5667
https://orcid.org/0000-0002-9336-8351
https://orcid.org/0000-0002-6717-0296

2828

take advantage of this expressiveness to devise the TCP Path
Changer (TPC) and implement it as a set of eBPF programs.
Using eBPF provides extensive flexibility for an application to
customize TPC to its specific requirements. For instance, some
applications might require very low network latency while
others might be more sensitive to route instability.

To demonstrate the usefulness and flexibility of the TPC, we
evaluate it on two different use-cases: (1) recovery from distant
link failures, and (2) dynamic selection of lowest-delay paths.
Our results for the first use-case show that TPC can quickly
react to link failures in a distant network, enabling TCP con-
nections to continue operating without being severely affected.
This should be contrasted with the time needed to converge to
a new global routing configuration, which may require several
seconds, if not much longer. Our second use-case is motivated
by highly interactive applications such as Web services or
request-response applications, whose performance is heavily
affected by network delays. We propose a TPC that monitors
the round-trip-time of TCP connections and reroutes them to
a shorter-delay path. This TPC employs an online learning
algorithm to make good decisions despite uncertainty regard-
ing its environment, and provides significant improvements in
performance over path-oblivious transport.

This paper is organized as follows. Section II presents the
motivation for our work and some necessary background. In
Section III we propose the TCP Path Changer (TPC) and
demonstrate how it enables the Linux TCP/IP stack to detect
distant link failures and react by rerouting the affected con-
nections. Section IV demonstrates how our proposed TPC
monitors the round-trip-time of connections and reacts by
rerouting the flows that suffer from excessive delays. We
discuss related work in Section V and conclude in Section VI.

II. MOTIVATION

Today’s hyperscale datacenters, such as Amazon’s AWS,
Google Cloud and Microsoft’s Azure, host hundreds of thou-
sands of servers that are interconnected via a private globe-
spanning network that is also connected to a large number of
Internet Service Providers. In addition to these hyperscalers,
there is a myriad of smaller datacenter networks that host up
to tens of thousands of servers. These smaller datacenters are
frequently used by smaller companies to host internal servers
and also provide public services such as Web sites, file and
backup servers, game servers, etc. Little public information is
available about these datacenters and their networks.

Interestingly, OVH, a French hosting company, provides
public information about the topology of its datacenters and
backbone infrastructure.> As of April 2022, OVH maintains
28 datacenters located in 19 countries and host more than
300,000 servers. Most enterprises deploy servers in multiple
geographic locations to cope with datacenter failures [32].
Content providers also often need to maintain multiple servers
at different locations to offer low latency services.

Examining the topology of OVH’s backbone and the loca-
tions of its datacenters, Fig. 1 reveals the number of distinct
peering links between OVH and any external peer network.

2See http://weathermap.ovh.net and http://peering.ovh.net.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

1.00
0.75 A
L

QA 0.50 A
@)

0.25

0-00 T T T T T T T T T T
o 1 2 3 4 5 6 7 8 9 10

Number of connections with OVH

Fig. 1. Distribution of the number of distinct connections between OVH and
external peers in the Europe backbone.

1.00

[R o= = o= = |
|
0.75 1 BT 1st - 2nd
L
8 0.50 - === Tst-3rd
L___: seses st - 4th
B U = lst-last
0.00 T T T
0 1 2 3

Number of hops between the two paths

Fig. 2. For each external peer - OVH datacenter pair, we compute all shortest
paths from the datacenter to a distinct connection with the peer. The figure
shows the difference in the number of hops between all these paths for each
pair in the Europe backbone. The paths are sorted by the number of hops.

We filter parallel links and regard an external peer as having
x distinct connections to OVH when that peer is directly con-
nected to x different OVH routers. Fig. 1 shows that roughly
40 % of the peers in OVH’s Europe backbone have two or
more distinct connections with OVH. Note that the number of
peering links is indicative of the importance of a peer, both in
terms of traffic volume and of business considerations.

Another interesting observation regarding the OVH network
relates to the distance between a given datacenter and these
multi-connected peers. We measured the difference in the num-
ber of hops between each datacenter i and external peer j,
restricting our attention to external peers with at least two
distinct peering links. We computed the shortest path from dat-
acenter i to all distinct connections of peer j and quantified the
length difference between the different paths. Fig. 2 plots the
CDF of these results when aggregating over all i’s and j’s. In
almost 60 % of the samples, the shortest shortest-path and the
second shortest shortest-path have the same number of hops.
This suggests that there may be many multiple available paths
with comparable performance interconnecting a datacenter and
an external peer.

A. Path-Aware Datacenter Servers

While datacenter networks provide multiple paths to reach
most Internet destinations, in practice, most servers are
oblivious to this diversity and treat the underlying network
as a blackbox. Specifically, each server uses the route selected
for it by the first-hop router, entrusting the network with the
responsibility to choose the best path towards any destination.

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on August 06,2025 at 09:42:25 UTC from IEEE Xplore. Restrictions apply.

JADIN et al.: LEVERAGING eBPF TO MAKE TCP PATH-AWARE

o
205"
'y

2829

p, AS1:AS2, R2
~ >

p. segs = [R2]
p. segs =[]

Fig. 3.

p, AS1:AS2, R2
>

= Data with seg list [R2]

Fig. 4. These servers learn several paths to each important prefix using BGP
Add-path and use them to forward packets with the IPv6 Segment Routing
Header (SRH), while clients only use one path.

We propose a new service that datacenter providers can offer
to customers needing higher performance (e.g., towards spe-
cific destinations) than the one provided by the default paths,
as well as faster recovery from link failures. In our scheme,
instead of blindly using the routes selected by first-hop routers,
these servers learn additional routes themselves and actively
select among them. For this, we install a BGP daemon on each
of these servers and connect it to one or two BGP route reflec-
tors. We configure these route reflectors to only send routes to
these servers and never accept routes from them. To distribute
alternate paths, we leverage the BGP Add-Path extension [33]
enabling a BGP router to advertise multiple routes towards the
same prefix over iBGP sessions. We point out that it is pos-
sible to configure BGP filters so as to only advertise multiple
paths for the most important prefixes.

Fig. 3 and Fig. 4 illustrate this utilization of BGP Add-Path
in a simple datacenter network connected to two different BGP
peers. The server S uses BGP Add-Path on its iBGP session
with a local route reflector. This route reflector learns the two
routes from AS2 and AS3 through the R2 and R3 BGP next-
hops. The server learns the two paths from the route reflector.
If the server sends a regular IP packet, it will follow the default
route, e.g., via R3. If the server prefers, for any reason, the
path via R2, it simply needs to add an SRv6 header to for-
ward those packets via R2. R2 removes the Segment Routing
Header (SRH) and forwards it to its destination, through AS2.
This is illustrated via the plain arrows in the figures.

To offer fast recovery from failures, the alternative routes
are injected to both sides of the connection since a failure
can affect both sides, e.g., in the context of inter-datacenter
communication, as depicted in Fig. 3. However, to offer a best
path discovery service, we only need to control one side of
the connection. Fig. 4 illustrates an asymmetric scenario where
the server benefits from path diversity but not the client.

=3 Data with seg list [R2]
= Data with seg list [R5]

These servers learn several paths to important prefix using BGP Add-path and use them to send packets with the IPv6 Segment Routing Header.

B. eBPF Makes the TCP/IP Stack Programmable

Historically, TCP implementations are structured as mono-
lithic code that can be configured at the granularity of individ-
ual connections using system-wide parameters [34], [35] and
socket options. The Linux TCP/IP stack, which is dominant on
servers, can also be tuned by leveraging eBPF [29]. eBPF is a
virtual machine included in the Linux kernel that supports lim-
ited RISC-like assembly language. System administrators can
attach eBPF programs using different hooks inside the kernel.
A static verifier, packaged with the kernel, checks memory
calls and program termination of the code before injection
to guarantee that the code does not make the kernel crash.
Different types of eBPF programs have been developed [36];
some collect statistics about the utilization of the kernel data
structures, while others monitor the operation of system calls,
etc. Brakmo [37] extended the Linux TCP stack to enable
it to execute eBPF programs when specific events occur.
Researchers have used this framework to support new TCP
options [38]. Here, we propose eBPF programs that enable
the Linux TCP stack to change the path of an established TCP
connection in response to network failures or when the path is
not providing the expected delay. We realize such path changes
using the IPv6 Segment Routing implementation within the
Linux kernel [39]. This scheme could also be realized via
multi-topology routing [40] in IPv4 networks.

C. The TCP Path Changer (TPC)

By putting together the different ingredients described
above, we demonstrate how TCP can become path-aware. We
propose the TCP Path Changer (TPC) and implement it as a set
of eBPF programs in the Linux TCP/IP stack. In the next two
sections, we present two flavors of the TPC, each targeting a
specific use-case. In Section III we show how the TPC enables
the detection of distant link failures and rerouting of affected
connections. In Section IV, we present an online-learning-
based TPC that monitors connections’ round-trip-times and
automatically reroutes flows that suffer from excessive delays.

III. RECOVERING FROM DISTANT FAILURES

Datacenter networks must preserve connectivity with peer-
ing networks in the presence of various types of link and router
failures, which have been shown to be frequent in ISP [9]
and datacenter networks [41]. To address this, network opera-
tors have deployed various fast reroute techniques [42], [43],
enabling transition to new routes within less than a few tens

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on August 06,2025 at 09:42:25 UTC from IEEE Xplore. Restrictions apply.

2830

Sender Receiver
Data,Path,
it

Data,Path,
———

RTO expiration

[N retrans.]

Data,Path,
ACK,Path;

Fig. 5. Detecting failures on the forward path.

of milliseconds for wide area links. When a peering link [44]
or a distant network fails, affected prefixes might be unreach-
able for several seconds or more. For this, researchers have
proposed techniques such as Blink [45], where routers mon-
itor the TCP flows and automatically reroute the flows when
their destination suddenly appears unresponsive.

Here, we explore a simpler approach for coping with these
distant failures: when such a failure occurs, the servers that
exchange data with the affected destinations quickly detect that
these became unreachable and leverage knowledge of alternate
BGP next-hops to reroute the affected TCP connections.

A. Triggering Rerouting Upon Path Failure

Consider the network shown in Fig. 3. The server sends
packets towards a destination that belongs to prefix p learned
from both AS2 and AS3. How can the server detect a tran-
sient failure on this path? A first approach would be to wait
until the reception of an ICMP destination unreachable mes-
sage from an intermediate router. This is unlikely to succeed
since routers strictly limit the rate of transmission of ICMP
messages. Instead, we leverage the fact that our server will
stop receiving acknowledgments for the data sent towards this
prefix. Its retransmission timer will expire and the unacknowl-
edged data will be retransmitted. We use these retransmissions
as triggers for executing the eBPF code that selects an alter-
nate path. We present two strategies for detecting path failures:
NRTOChanger(N, M) and TimeoutChanger(7, M).

NRTOChanger(N, M) selects a path during the handshake
(i.e., when sending the SYN or the SYN+ACK). Then,
NRTOChanger(N, M) monitors the retransmission timer and
the reception of duplicated data for each TCP connection, and
selects an alternate path after N successive expirations or M
retransmissions from the other end.

Failures can be asymmetric, that is, a failure can affect one
direction of the communication and not the other. If the fail-
ure occurs on the path from the sender to the receiver (see
Fig. 5), NRTOChanger(N, M) waits for N retransmission time-
outs (RTO) before selecting another path. Assuming that only
the current path fails and that TCP uses standard exponential
backoff [46], which doubles the RTO each time, it takes the
sender va: 61 2" RTOgender to switch to a new path.

The failure could also affect the return path. Fig. 6 shows
its detection. NRTOChanger(N, M) also monitors the sending
of duplicated acknowledgments. These duplicated acknowl-
edgements are sent upon receiving duplicated data. Since the

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Sender Receiver

Data,Path,
ACK,Path,
h

Data,Path,
ACK,Path,
*

[M dup. ACK]

Data,Path,
ACK,Path,

RTO expiration

RTO expiratio

Fig. 6. Detecting failures on the return path.

return path fails, the duplicated acknowledgments are lost. The
sender thus resend its data which will trigger other duplicated
acknowledgments. NRTOChanger(N, M) waits for M duplicate
acknowledgments sent and therefore the number of retransmis-
sions received from the sender (see Fig. 6) before selecting
another path. Under the same assumptions as before, this will
involve a time duration of sz\io 2" - RTOgpnger from the
reception of the data and the sending of an acknowledgment
that will reach the sender.

Coordination between both entities would be useful from
a performance viewpoint. Custom TCP options defined in
eBPF [38] can carry these data. Indeed, we want M, the
number of duplicated acknowledgments before changing the
receiver’s path, to be lower than N, the number of retrans-
mission timer expirations, before changing the sender’s path.
Still, the NRTOChanger(N, M) on both endhosts will even-
tually converge to a working path if they have access to at
least one path reaching the peer. The receiver’s path only
changes when the sender uses a working path. So, eventu-
ally, the receiver will use the right path. The sender might
loop over its paths several times to make the receiver switch
to a correct path.

Note that the lowest acceptable values for M and N are
respectively 3 and 2. Operators should increase them if they
expect many transient link flaps and very heavy congestion on
all the paths. However, it is not advised to decrease M and N
below these values. Indeed, to ensure a quicker recovery time,
M should be strictly smaller than N, and setting M to 1 means
changing path after seeing a single retransmission.

TimeoutChanger(7, M) works differently. When encounter-
ing retransmissions, it selects an alternate path when some data
remains unacknowledged for more than a predetermined time
interval of length 7. This time value could be selected by the
application developer, e.g., 200 ms for interactive applications.
We keep M, the number of duplicated acknowledgments sent
before changing the path. TimeoutChanger strategy is more
convenient for the interactive applications that require delivery
within some deadline. It provides a more concrete parameter
for these applications than the number of RTOs.

B. Implementation

We implement TPC as a set of eBPF programs attached to
the socket operations because such programs can access the

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on August 06,2025 at 09:42:25 UTC from IEEE Xplore. Restrictions apply.

JADIN et al.: LEVERAGING eBPF TO MAKE TCP PATH-AWARE

User space

TPCDaemon
q SRH map Conn map P
l

/
TPC tcp_bpf_call()
eBPF VM

Kernel

Fig. 7. Path management code talks to the Path Daemon through eBPF maps.

Listing 1 TPC: initialization
int handle_sockop (struct bpf_ sock_ops #skops) {
struct connection new_conn;
struct conn *conn = bpf_map_lookup_elem(&conn_map,
sfive_tuple);

if (!conn) { // New connection
new_conn = new_connection_state();
new_srh = get_srh(0);

move_to_path (skops, new_srh);
bpf_map_update_elem(&conn_map,
&new_conn) ;

sfive_tuple,

conn = &new_conn;
}
switch (skops->op) {
CK_OP P2 HED B

case

// of three
new_srh = get_srh(0);
move_path (&dest_map, flow_id.remote_addr,
flow_info->srh_id, skops);
bpf_map_update_elem(&conn_map, &five_tuple,
conn) ;

break;

case BPF CK_OP TATE_CB:

// f a cor
if (skops->args[l] == BPF_TCP_CLOSE)
bpf_map_delete_elem(conn_map, &five_tuple);
break;

return 0;

state of the TCP socket in Linux kernel 5.3. We extended the
Linux kernel to add new eBPF helpers for the presented use-
cases. Our eBPF programs are triggered upon a series of events
like the establishment of a connection, a retransmission. This
is more efficient from a performance viewpoint than attaching
eBPF to every packet transmission [38].

Fig. 7 shows the interactions between the different compo-
nents inside the endhost. The TPC code runs in an isolated
eBPF VM within the kernel. In the TCP stack, the injected
code receives a structure containing the opcode of the hook
that triggered it, as well as the five-tuple and some additional
variables of the TCP connection, such as the minimum RTT
or the congestion window. Moreover, it can read and write to
memory chunks, called eBPF maps, which can be accessed by
a user-space application. In this architecture, the TPC daemon
fills a first eBPF map, the SRH map storing the IPv6 Segment
Routing Headers (SRH) towards the different BGP next-hops.
Since eBPF injected code does not have global variables or
heap, we use a second eBPF map, the conn map, mapping a
five-tuple to a structure containing data about the connection.

Listing 1 shows the pseudo code for the path manage-
ment initialization. Our TPC initializes its connection struc-
ture and sets the path upon actively starting the connection
on the client-side. This way, the SYN follows the chosen

2831

Listing 2 TPC: reacting to failure

int handle_sockop (struct bpf sock_ops xskops) {

// [Initialisation pre

ented L e]

int new_id = (conn->srh_id + 1) % nbr_srhs;
switch (skops->op) {
// [Other c s

nted before]

case E
// Dt

to be sent

ated : 1owledgement s going

if (conn->last_rcv_nxt != skops->rcv_nxt) {
flow_info->last_rcv_nxt = skops—->rcv_nxt;
conn->remote_retransmission_count = 1;
return O;

}

conn->remote_retransmission_count += 1;

if (flow_info->remote_retransmission_count < M)
return 0;

struct srh new_srh = get_srh(new_id);

move_to_path (skops, new_srh);

break;

case BPF_! ;

// Re ission

>t ssion timer exp on

if (conn->last_snd_una != skops->snd_una) {
flow_info->last_snd_una = skops—>snd_una;
conn->local_retransmission_count = 1;
return 0;

}

conn->local_retransmission_count += 1;

if (flow_info->local_retransmission_count < N)
return 0; // No i i

enough retran

struct srh snew_srh = get_srh(new_id);
move_to_path (skops, new_srh);

break;
}

return O;

path. However, we cannot do the same for the SYN+ACK.
This is because the Linux kernel uses a specific struc-
ture to represent a non-established TCP connection, called
a request socket. This structure is more lightweight than
regular sockets to prevent SYN flooding attacks [47]. In
particular, it does not support the socket options that are
required to specify a specific path for the SYN+ACK. The
kernel copies the contents of the request socket in a regu-
lar socket at the end of the TCP three-way handshake with
the BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB hook.
The BPF_SOCK_OPS_STATE_CB hook is used to cleanup
the state of the connection. It is possible to circumvent the
issue by adding an SRH to the SYN+ACK segments in eBPF
program hooked to a TC on egress. This is left for future work.

As shown in Listing 2, during the transfer, the eBPF
program is triggered by expirations of the local retransmission
timer (BFP_SOCKS_OPS_RTO_CB) or the transmission of
duplicate acknowledgments (BPF_SOCKS_OPS_DUPACK),
the consequence of a retransmission from the other endhost.

TPC allows detecting complete path failures or extreme
network congestion. It maintains two distinct counters
for this purpose: local_retransmission_count and
remote_retransmission_count. This counter is reset
when the data transmission advances. If the local counter
reaches N or the remote one reaches M, TPC calls get_srh
to find a new path. Note that the value of the N and M
thresholds can be specified when the eBPF program is loaded.

TPC changes the path of the TCP connection by calling
two new socket options with bpf_setsockopt as shown in

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on August 06,2025 at 09:42:25 UTC from IEEE Xplore. Restrictions apply.

2832

Listing 3 Path migration

void move_to_path (struct bpf_ sock_ops #skops,
struct srh *new_srh) {

// Actual move

bpf_setsockopt (skops, SOL_IPV6, IPV6_RTHDR, new_srh,
sizeof (¥xnew_srh));

// Reset TCP metrics

bpf_setsockopt (skops, SOL_TCP, TCP_PATH_CHANGED,
&val, sizeof (val));

1.0]
r —
08 == = Sender recovery I
’ Receiver recovery I
W 0.6 I
a I
© 0.4 1 I
|
0.2 !
I
0.0 . . =
0.0 0.5 1.0 1.5
Reaction time to failure (s)
Fig. 8. CDF of the recovery time with one connection with

NRTOChanger(N = 3, M = 2).

Listing 3. The first one sets the SRH on the path. As TCP does
not have any information about the level of congestion on the
new path, the second socket option resets the retransmission
timer. Indeed, the RTO is doubled at each retransmission [46]
to prevent the connection from worsening an already congested
path. When TPC moves from one path to another disjoint of
the first one, it is pointless to use high RTO values.

C. Evaluation

We experiment on networks emulated using Mininet [48]
on a Linux kernel 5.3 running on a virtual server emulated by
QEMU, equipped with 20 virtual CPUs and 16 GB of RAM.
To emulate links, we use tc-netem to set their delays and
tc-htb to set their bandwidth. The other parameters of these
tools are the default ones. For our evaluation, we use the topol-
ogy shown in Fig. 3. This network consists of 100 Mbps paths
with 6ms RTT. In the figure, the bottom interdomain path
corresponds to the preferred next-hop and the top to the alter-
nate one. We disable BGP failure convergence to demonstrate
TPC’s failure recovery without emulating a network with more
ASes to delay BGP convergence.

The laptop initiates a given number of connections throttled
at 10 Mbps using iper£3 towards the server. The default ini-
tial congestion window in Linux is 10 packets. We fix N (i.e.,
successive timer expirations) to 3 and M (i.e., the maximum
number of retransmissions from the peer) to 2. After 10 sec-
onds, we emulate a failure of the primary path by introducing
100 % packet loss with tc-netem so that no ICMP messages
are generated. Then, we observe the time needed to send traf-
fic to the working path for each side of the connection. We
repeat this experiment 100 times and provide a cumulative
distribution function (CDF) of the recovery time.

NRTOChanger(N = 3, M = 2) can quickly reroute TCP con-
nections after failures: Fig. 8 shows a CDF of the recovery

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

1.0
1
0.8 == = Sender recovery I
' Receiver recovery I
L 0.6 I
Qa "' ________
© 4
0.4 I
1
0.2 1
|
0.0 T ' T T
0.0 0.5 1.0 1.5

Reaction time to failure (s)

Fig. 9. CDF of the recovery time with one connection with
TimeoutChanger(7T = 700 ms, M = 2).

times of the sender and the receiver. In the median experi-
ment, the sender recovers first after 1600 ms. This is the time
duration required by the sender to experience three successive
retransmission timeouts.

The Linux kernel computes the RTO slightly differently
from what is advised by the IETF [46]. The IETF advises
using the following formula:

RTO = max(H,SRTT + maz(G, K * RTTyR))

with H set to 1 second, K set to 4, G being the clock gran-
ularity, SRTT being the smoothed RTT and RTTyp being
an estimation of the RTT variance. However, the Linux kernel
sets H to 0, K to 1, and G to 200 ms. The RTT being 6 ms,
having only one connection in the network, the base RTO will
always be close to 206 ms. This base RTO is doubled at each
consecutive timeout. For this reason, the sender using TPC
waits for 3 timeouts before changing its path. Therefore, it
waits at least 206 + 2 - 206 + 4 - 206 = 7 - 206 = 1442 ms.

The difference between our lower bound, 1442 ms, and the
experienced one, 1560 ms, can be explained by three factors.
First, the smoothed RTT can be slightly inaccurate because
of delayed acknowledgments, which increase the RTT by a
few milliseconds. Second, the rate at which the retransmission
timer is checked is at a maximum resolution of 4ms. The
difference of 116 ms (for the median) is the time required to
resend the window. The retransmission timer is started when
the last packet is sent. This last source of delay is the main
reason behind the variation that we observe in the CDF.

The receiver needs 225ms more in the median case to
change its path. Indeed, TPC changes its path after 2 retrans-
missions of the same acknowledgment. The receiver sent the
initial acknowledgment during the failure. The first retrans-
mission is triggered by the retransmission of the data on the
working path. The receiver will wait a last retransmission from
the server, at least 206 ms later. Because of the time needed to
send the window, we observe an increase of around 225 ms.

TimeoutChanger(T, M) also detects failures: Instead of
relying on a given number of retransmissions, TPC can
redirect if the same bytes are in flight for more than a
given time that we arbitrarily set at 700 milliseconds. Fig. 9
shows the result with the same setup as before except that
we use TimeoutChanger(7 = 700ms, M = 2) instead of
NRTOChanger(N = 3, M = 2). TPC on the sender will change
its path if the bytes are unacknowledged for more than 700 ms.

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on August 06,2025 at 09:42:25 UTC from IEEE Xplore. Restrictions apply.

JADIN et al.: LEVERAGING eBPF TO MAKE TCP PATH-AWARE

1.0

l -
i F 1 flow
0.8 .
| l == 5 flows
L 0.6 1 I . = 10 flows
S I | s 201l
© 0.4 ! . ows
Lo
0.2 - : -
0.0 — T ’ T T
0 2 4 6

Reaction time to failure (s)

Fig. 10. CDF of the recovery time with increasing numbers of parallel flows
with NRTOChanger(N = 3, M = 2).

It measures this delay from the last call to a hook called
at each RTT estimation. It is called upon receiving an ack
for the window, at least once per RTT. The number of
times depends on the delayed ack implementation on the
receiver. If there was no byte in flight during the failure, this
time will be measured from the first retransmission timeout.
700 ms is slightly above the time needed for two retransmis-
sions, i.e., 206 + 2 - 206 = 618 ms. The change is triggered
after either 2 (for more than half of the connections) or 3
retransmissions. This depends on the state of the congestion
window when the failure occurs. If the congestion window
is almost full, the retransmission timeout occurs quickly and
TimeoutChanger(7 = 700 ms, M = 2) needs 2 retransmissions,
otherwise, it needs 3 of them.

The receiver also waits for two retransmissions of the same
acknowledgment before changing its path: hence the same
delay difference of around 225ms between the sender and
receiver path changes.

Higher RTTs yield slower recovery: We use the
NRTOChanger(N = 3, M = 2) and repeat the experiment
by increasing the delays of all the links between routers.
Increasing the RTT delay from 6 ms to 24 ms yields a recovery
400 ms slower. This is consistent between 24 ms and 84 ms:
the recovery is 500 ms slower. This increase is explained by
two factors: the RTO and the size of the congestion window.
The RTO increases with the RTTs and this slows down the
recovery. Moreover, a higher RTT increases the congestion
window, raising the number of packets to send before it is
filled and therefore, before starting the retransmission timer.

TPC failure detection works in presence of multiple flows
competing for the network bandwidth: We start, on the same
path, 1, 5, 10 or 20 connections in parallel, each using
10 Mbps. The bandwidth of the links being 100 Mbps, start-
ing 10 or 20 flows triggers congestion and the data transfer
becomes network limited. This explains the gap observed in
Fig. 10. With 10 or 20 flows, the window is larger because
application-limited transfer do not increase their congestion
window as much. A larger window means a longer time to
send it on the wire. Other than that, the observed variance is
slightly larger for 20 flows but the difference is not significant.

TPC failure detection works even if more than one path
has failed: We add one alternative interdomain path to the
topology shown in Fig. 3 and we introduce, after 10 seconds,
a 100 % loss rate on two of the three paths. Even if this extreme

2833

1.0
I
1 failed paths over 2 available I
0.8 . .
= = 2 failed paths over 3 available |
W 0.6 !
a |
© 0.4 1 I
I
0.2 A |
I
0.0 T . . A
0 2 4 6 8

Reaction time to failure (s)

Fig. 11. CDF of the recovery time with different number of failed paths
with NRTOChanger(N = 3, M = 2).
Sender Receiver

Path, —x | Path;

Path, f———x

Path,

p ———
Path;, Path,

Path, f——x

Path,

Path;

Fig. 12. Recovery of a TCP connection when two of three paths failed with
NRTOChanger(N = 3, M = 2).

scenario is unlikely to happen, it shows the resilience of TPC.
Fig. 11 shows that the impact of two failing paths out of three
is larger than doubling the recovery time. Indeed, both the
sender and the receiver need to converge on the correct path.

Fig. 12 explains this increase. One line represents a retrans-
mission from the sender or a duplicate acknowledgment from
the receiver. The color of a line represents the path it is sent
on. Here, the first two paths (i.e., the red and blue ones) failed.
Only the green one works. The sender needs to change its path
6 times to make the receiver move to the third path.

TPC failure detection converges faster on asymmetric fail-
ures: In the previous experiments, we considered that both
endhosts had the same set of paths and that each path failed
in both directions but this might not always be the case. Either
endhost might be on a valid path while the path used by the
other endhost fails. To emulate asymmetric failures in our
topology (see Fig. 3), we introduce tc-netem on only one
side of a link. In case of sender path failure, the time required
to converge is similar to the sender reaction time on symmet-
ric failures (see Fig. 10). Indeed, upon symmetric failure, the
sender is the first endhost to change its path. The receiver fail-
ure recovery in asymmetric design takes two retransmissions
and is, thus, faster.

IV. DYNAMICALLY SELECTING LOWEST-DELAY PATHS

The previous section has shown that by leveraging eBPF a
TCP connection can react to network failures by changing its

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on August 06,2025 at 09:42:25 UTC from IEEE Xplore. Restrictions apply.

2834

path. In practice, eBPF programs can be executed at differ-
ent places in the TCP stack [37]. In this section, we exploit
this flexibility to enable TCP to autonomously find lowest-
delay paths. Measurements have shown that different paths
to the same destination can have different delay characteris-
tics. Delays measured using ping vary even across equal-cost
paths to a given destination [14]. Measurements performed
within a large cloud provider network [11] show that the delays
between servers located in different datacenters vary from one
TCP connection to another. These two examples relate to the
use of Equal Cost MultiPath (ECMP) for balancing packets
across different paths on a per-flow basis. In Section II, we
discussed the existence of multiple peering links between a
cloud provider and many of its external peers. Measurements
on such peering links [49], [50] reveal that some of them suf-
fer from congestion. When the load on such a link increases,
it first results in increased delays and then in packet losses (as
link buffers become saturated). At any given time, different
peering links will thus exhibit different delays, with the lowest
delay path changing as the load on peering links changes.

Our aim is to accommodate the mapping of transport-layer
connections to low-delay paths. Doing so entails contending
with three main challenges:

1) gaining host visibility into the delays of different avail-

able paths,

2) determining which path each connection should be

mapped to at any point in time, and

3) enabling hosts to realize their choices of paths. This

last challenge is solved by the architecture presented in
Section II. We next discuss the first two challenges, and
how these are addressed by our schemes.

Selecting among paths via online learning: A simple
approach for choosing among different paths is to pick the
path exhibiting the best performance at that point in time.
Such a greedy approach, however, has significant draw-
backs. The performance of the chosen path might quickly
deteriorate as additional connections are rerouted to it. For
instance, a path that currently exhibits low latency because its
bandwidth is not fully utilized, can become congested once
additional connections are mapped to it, leading to unaccept-
ably long latencies. This is even worse when decisions are
made simultaneously and in an uncoordinated manner by dif-
ferent hosts, or for different connections from the same host.
A too frequent rerouting of connections might lead to traffic
instability.

We observe that ideas from online learning theory (and,
more specifically, multi-armed bandit (MAB) theory [51]) are
naturally applicable to this challenge. In the MAB setting, a
decision maker (i.e., agent) repeatedly selects between dif-
ferent actions and observes, in hindsight, the implications of
its chosen action on performance. In our context, the deci-
sion maker is the host and the actions correspond to different
choices of paths to which a connection could be mapped. We
show that using a classical MAB algorithm with provable guar-
antees can yield both high performance and stability. Here, we
focus on passive measurements. Section IV-B details our solu-
tion. An alternative measurement strategy is the active probing
of a path without moving the TCP connection on the path. This

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

is not possible because the eBPF interface does not allow send-
ing packets on every path at the same time and measure their
smoothed RTT without disturbing the statistics (e.g., smoothed
RTT) collected by TCP itself.

A. Path Performance Monitoring

To guide path selection, each host collects performance-
related statistics for paths that carry its data traffic and stores
these in a key-value cache. We next discuss our choices of the
key of the cache, data to store, and data expiration time.

As in routing tables, data in the cache is aggregated by
destination IP prefixes. To facilitate the aggregation of data
by applications, the ports can also be included in the key or,
alternatively, some applications can be assigned with unique
identifiers, included in the key. The way data is aggregated
has important implications; a very specific key will not be
associated with sufficiently many connections to infer mean-
ingful statistics while wasting memory, whereas a too broad
key might encompass very different types of traffic, which
would better be considered independently of each other.

The data itself consists of two elements:

1) the list of available paths (towards a certain destination

IP prefix), and
2) collected performance-related statistics for each avail-
able path.
In SRv®6, for instance, each path on the list will be represented
as a sequence of segments, indicating the SRv6-capable routers
the path traverses. Three natural path performance metrics to
consider are throughput, packet loss ratio, and RTT. To assign
more weight to recent, and so more informative, measurements
than to older ones, while not being overly sensitive to vari-
ance in samples, we opt for keeping track of the exponential
moving average of the monitored performance indicators (this
approach is notably used in the Linux TCP stack to compute
the connection’s smoothed RTT [52]).

B. Online Learning Path Selection

We now explain our approach for mapping a new connection
to an available path. Recall that a greedy scheme, while simple,
can induce undesirable effects for performance and stability,
and so we adopt a different approach: employing an online
learning algorithm, namely, EXP3 [53].

EXP3, described in Algorithm 1, is designed for the MAB
setting. An agent is repeatedly faced with a choice between
different actions. At each discrete time step ¢ = 1,2,3...
the agent selects an action a; from a fixed set of actions
A and then learns, afterwards, the implications of selecting
at, captured by an observed utility value u;. Importantly, the
agent only has visibility on the consequences of its chosen
action a;. Therefore, only its weight is updated. It cannot tell
how other choices of actions would have impacted its derived
utility value. The more rewarded the action is, the higher
its weight increases, and the higher its selection probability
increases. Another important feature of the MAB setting is that
no assumptions whatsoever are made regarding how actions
are associated with utility values. In fact, the utility values
derived from selecting different actions can even be assumed

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on August 06,2025 at 09:42:25 UTC from IEEE Xplore. Restrictions apply.

JADIN et al.: LEVERAGING eBPF TO MAKE TCP PATH-AWARE

2835

Algorithm 1 EXP3 Algorithm

Given T € [0, 1], set the weights: wg (1) =1 for all a € A
At each time step t = 1,2,3...,

Set pa(t) = (1 - I)telbl
2pea wh(t)
Draw the action a; randomly according to the pq () distribution
Observe reward u; at the end of time step ¢

Ut

Define the estimated reward % to be —%1—~
pat(t)

Set way (t + 1) = wa, (t) - L @/l
Set wq(t + 1) = wq(t) for each action a # ay

r .
+ 5 for each action a
Al

to be chosen adversarially. Despite these limitations on the
provided feedback and the unpredictability of the environment,
algorithms like EXP3 provably provide meaningful benefits to
the agent (“no regret”) and convergence to equilibrium when
multiple interacting agents employ EXP3 [53].

MAB algorithms are natural to apply to our context. A host
can be modeled as an agent that, for each connection des-
tined for the same IP prefix, selects between different paths
to determine which path the connection should be mapped to.
Selecting a path constitutes the action. The empirical impli-
cations of a certain choice of path are only observable to
the host in hindsight, and the performance that would have
resulted from a different choice of path for the connection is
unknown to the host. In addition, since path performance is
often affected by many dynamic factors that are external to
the host (such as the existence and behavior of connections
originating on other hosts whose paths intersect this path),
avoiding assumptions regarding path performance (the utility
from selecting the path) is prudent. I' captures the extent to
which alternative paths are probed. If I" is set to 1, no explo-
ration is made. If T" is set to 0, EXP3 degenerates to a uniform
probability distribution over paths.

To demonstrate the feasibility of our proposed scheme,
we implement a path selection mechanism that monitors
TCP connections that require low delays. We aggregate
path performance by destination IP prefix and monitor the
smoothed RTT. We use SRv6 to select paths and the EXP3
weights, with respect to the paths towards a specific desti-
nation IP prefix, are updated once a connection towards that
prefix terminates.

Listing 4 shows the pseudocode of this path manage-
ment. We implement the cache using two eBPF maps: one
for the list of paths and one for the connections, as shown
in Figure 7. Our TPC path manager initializes its con-
nection structure and sets the path upon the end of the
three-way handshake on server-side as the TPC presented in
Section IV. We use the EXP3 algorithm to select the path at
the BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB hook.
Every RTT, using the BPF_SOCK_OPS_RTT_CB hook, we
check if we transmitted more than a given hook activation rate.
If we did, we reward the path and restart a new path choice. If
the chosen path changes, we update the SRH. The hook activa-
tion rate is an amount of sent data after which TPC rewards its
path. For short-lived connections, we reward the path once, at
the end of a connection, using BPF_SOCK_OPS_STATE_CB
before cleaning up their state.

Listing 4 Path management

int handle_sockop (struct bpf_ sock_ops #skops) {
conn = bpf_map_lookup_elem(&conn_map, &five_tuple);

switch
case

(skops->op) {
/7 f three-way
new_conn = new_connection_state();
flow_info->srh_id = choose_srh_exp3();
new_srh = get_srh(flow_info->srh_id);
move_path (skops, new_srh);
break;
case
// Every RTI
if (skops->snd_nxt conn->last_seq
conn->last_seq = skops->snd_nxt;
reward_path_exp3 (flow_info->srh_id, skops
flow_info);
flow_info->srh_id = choose_srh_exp3();
new_srh = get_srh(flow_info->srh_id);
move_path (skops, new_srh);
}

case

/ End of handshake

>= HOOK_RATE) {

>srtt,

End of a

if (skops->args[l] == BPF_TCP_CLOSE) ({
reward_path_exp3 (flow_info->srh_id, skops->srtt,
flow_info);
bpf_map_delete_elem(conn_map, &five_tuple);

return O;

Listing 5 Reward the path

void reward_path_exp3(int srh_id, int srtt,
struct flow_info »flow_info) {

flow_info->max_srtt = max(flow_info->max_srtt, srtt);
observed_reward = flow_info->max_srtt srtt;
estimated_reward =

observed_reward / flow_info->path_probability;

// Update weights

exp = exponent (e, GAMMA » estimated_reward
/ nbr_paths);

weight = get_weight (srh_id)

set_weight (weight, srh_id);

normalize_weights();

x exp;

The overhead of Listing 4 might appear more consequent
because it is called every RTT. However, only two conditions
are usually checked. The hook activation rate controls the over-
head of updating the paths’s weights. Moreover, the overhead
of eBPF programs running at every sent packet has been shown
to be small [38]. At worst, they show an overhead of 10% for
a 10-Gbps traffic.

The eBPF architecture [29] in the Linux kernel 5.3 only sup-
ports integer computations. However EXP3 and other machine
learning techniques rely on floating numbers. To support them,
we implement additional helpers in the Linux kernel. We
define a floating point value as a structure with a mantissa
and an exponent. We define a helper for every regular opera-
tor: addition, difference, product and division. As EXP3 needs
to compute an exponential, we rely on the following Taylor
series to compute it: e” = "7 o %7 The two last helpers that
we need are to convert a float from and to two integers, one
for its integer part and one for its decimal part. We implement
these helpers with 400 lines of code in the Linux kernel.

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on August 06,2025 at 09:42:25 UTC from IEEE Xplore. Restrictions apply.

2836

Listing 6 Weights’s normalization
void normalize_weights () {
for (i = 0; i < weights_len; i++) {
weight = get_weight (i) » NBR_TOKENS / sum_weights();
if (weight < 1)
weight = 1;
set_weight (weight, 1i);
}
}

Our implementation of EXP3 requires us to define the
reward function. Providing high reward values makes EXP3
increases the probability of using a path. As we want to tar-
get the path with the lowest latency, its reward expression
must be higher than the other ones. Knowing this, we define
the reward as SRTTnay — SRTT. SRTTpqz is the highest
observed SRTT value for the connection so that the reward
is guaranteed to be positive. The pseudo-code of this reward
computation is detailed in Listing 5. For readability, we replace
the floating point helpers by the regular arithmetic operator
signs.

By default, the EXP3 algorithm is designed to reach equi-
librium. However, in networks, various events can disturb it. If
we let EXP3’s weights exponentially increase in stable times,
they will quickly reach the maximum floating point number
that we can represent. Moreover, the increase of the best path’s
weight will deepen the difference with the other weights even
if it does not actually change much in the probabilities of
using the path. If the best path becomes undesirable, it will
take much time to reduce this difference and start using the
other paths. For instance, TPC identifies a path as the opti-
mum with a probability of > 99.99% but its RTT changes. If
its weight is 99.99 (and the other path’s one is 0.01), it will
only take a few iterations/measurements to increase the other
path’s weight enough for it to be used. If the current path’s
weight was instead 264, it would have required many more
iterations to let the other path being used. Both weight dis-
tributions will yield similar probabilities during stable phases.
Therefore, we normalize paths’s weights to optimize TPC’s
reaction time. We chose to limit it to [1, 10000] so that it
is at most possible to reach 99.99% of connections on the
best path (if there are two alternative paths). On servers with
millions of connections, it is interesting to increase the upper
limit in order to go above 99.99% of probability during stable
phases. Listing 6 shows how this is implemented. We normal-
ize the paths’s weights after rewarding any path, at the end of
a connection.

This path selection mechanism could be combined to the
remote failure detection ones (Section IIT). We could modify
failure detection algorithms to mark paths that lost connectivity
and filter out failed paths when targeting low latency.

C. Evaluation

We emulate networks with Mininet [48] on a Linux kernel
5.3 running on a virtual server emulated by QEMU, equipped
with 20 virtual CPUs and 16 GB of RAM. To emulate links

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

1.0 L
= === =TT I

0.8 - | .

0 l I
w 0.6 1 | [— | .
@) — .- 9 —n]
© 0.4 _: I'=0.1

[= '=0.01
0-2 l == Random
0.0 T T T T T
0 100 200 300 400 500

Completion time (ms)

Fig. 13. Completion times of HTTP requests. TPC outperforms a purely
random selection and a low value of I" provides better results.

delays, we use tc-netem. The bandwidth is emulated with
tc-htb. Their other parameters are the default ones.

We evaluate TPC for the interdomain use case shown in
Fig. 4. A CDN server is queried by endhosts in distant ASes.
The AS of the server provides two paths to TPC. Both paths
have different latencies that will change over time. We use our
TPC in the server to find the lowest RTT path. The client does
not run TPC and thus, only the server can change its path.

This network uses links with the same bandwidth
(100 Mbps). The lower interdomain path has a RTT of 10 ms
while the upper path has this RTT multiplied by a given factor
(10 by default). The client always uses the lower path.

Our evaluation represents a set of clients that retrieve small
files from a Web server. The server includes our TPC with
EXP3. The clients use Apache Benchmark to continuously
download a 100kB file from a 1ighttpd server during 50
seconds. We configured Apache Benchmark to use 4 parallel
connections. Apache Benchmark creates one connection for
each HTTP request and TPC is executed when the connection
closes. After 10 seconds, we invert the delays of both paths in
the direction from the server to the client. We use tc-netem
to change the link delays. Then, we observe both the com-
pletion time of the requests and the time needed for EXP3
to converge to the working path at the initialization and after
the inversion of the path delays. We consider that EXP3 has
converged once the lowest-delay path carries over 90% of the
weights’ sum. We use a uniformly random selection of the
paths as a baseline to compare the benefits of EXP3 in TPC.
This baseline is implemented through static routes adding one
of the SRH that are load balanced through ECMP. The default
initial congestion window in Linux is 10 packets.

TPC uses the quickest path as opposed to a uniformly ran-
dom solution: Fig. 13 shows the CDF of the completion time of
each request with TPC either using a uniformly random choice
or EXP3 with various I' values. Without learning from expe-
rienced delays, the uniformly random heuristics cannot learn
anything from the network and therefore half of the connec-
tions use the longest delay path. In contrast, TPC using EXP3
with I' # 1 learns and quickly adapts to delay changes.

We observe roughly 4 different completion times in each
TPC curve and 2 for a uniformly random heuristic. The
fastest and longest of these four completion times relate to
connections whose traffic uses the lowest RTT path and the

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on August 06,2025 at 09:42:25 UTC from IEEE Xplore. Restrictions apply.

JADIN et al.: LEVERAGING eBPF TO MAKE TCP PATH-AWARE

highest RTT path, respectively. The two completion times in
between pertain to connections whose SYN+ACK is not sent
along the path used to carry the data. Recall that since we
do not control the path for the SYN-+ACK packets in Linux,
this path is always the lower (and default) path whose delay
changes during the experiment. This accounts for the distance
of the second completion time from the first, and of the third
one from the fourth. In the uniformly random heuristics, all of
the traffic (including SYN+ACK packet) uses the same path.

When the situation is stable, the lower the T, the better:
Fig. 13 shows that the I' value impacts the rate of connec-
tions using the quickest path. As described in Algorithm 1,
every path has at least a probability of U?aFTs\ to be chosen.
Intuitively, I' is the percentage of uniformly random choices
that TPC makes. In our example with two paths, at most
1-0)+ g =1- g of the traffic can be routed on the
right path if I is constant and the traffic is stable. With I" set
to 0.2, TPC cannot send more than 1 — % = 90% of the
traffic on the best path. There are only two convergences in
this experiment and therefore, probing too much for only one
change hurts more connections than converging slower. For
instance, setting I" to 0.01 is a better choice in the big picture
while it converges 6 times slower than setting I" to 0.1. A real
deployment of the TPC would help to refine the choice of the
T" over time. This is left as future work.

A higher T' enables a faster convergence: Indeed, with a
high I', we often measure the path delay changes because
this parameter gives the rate of connections that are routed
randomly. With T" set to 0.1, 90 % of the convergence times
is lower than 1.25s. If we set I' to a tenth of that, 0.01 %,
the convergence time increases to 5s. The influence of T is
similar because setting it to 0.1 is still better than to 0.2 or
0.01. Therefore, with unstable paths, when we expect frequent
delay changes, I' should be higher.

A larger difference in path delays only slightly speeds up
convergence: We change the delay factor between the quick-
est and the slowest paths. We use two, five and ten times the
quickest path RTT of 10 ms. Increasing the delay factor beyond
five times does not change the convergence time. Even with
a delay factor of two, the increase of delay did not exceed
100 ms in 95 % of the runs. Indeed, the reward is more impor-
tant in Listing 5 when the maximum smoothed RTT is higher.
TPC works better in heterogeneous networks and this is in
these networks that TPC’s purpose is the most useful.

The higher the hook activation rate is, the quicker TPC
converges: This hook activation rate is influenced by the size
of the transfer since we use a hook at the end of the TCP
connection. Logically, more information about the state of the
paths yields faster convergence. With a hook activation rate of
1kB, 90 of the 100 runs are below 0.75s while with a rate of
1 MB, the 90" percentile is 2s.

If we do not change the hook activation rate of each connec-
tion but we increase the number of simultaneous connections,
paths will be more rewarded. When TPC runs on 2 paral-
lel connections instead of 4, paths are rewarded twice less.
Therefore, we observe a decrease of the convergence time of
0.5s. Leaving one connection adds 1s of delay on average.

2837

V. RELATED WORK

CPR [54], Blink [45] and INFLEX [55] are the closest
related work to our first use case, as they support recovery
from remote failures. CPR can be installed in Edge Networks
of Content Distribution Networks. It monitors connection stalls
in a similar way to TPC. When a failure or stall is detected,
they use a combination of fwmark bits, MPLS, and ECMP
to reroute the affected flows. INFLEX [55] and Blink [45] are
network-level solutions. Both require programmable switches
to monitor connections and reroute all the traffic if they notice
many connections experiencing a stall. They will fail to notice
remote failures affecting a few connections but, when they
affect many connection, they will have more data than TPC
to decide to change paths.

The closest related work to our second use case are
Replex [56], CONGA [57] and Clove [58]. Replex [56]
reroutes flows withing hundreds of milliseconds to meet traffic
engineering objectives using ideas from game theory. Unlike
TPC, Replex is primarily focused on improving bandwidth
utilization. CONGA [57] is a distributed load balancer for dat-
acenters intended to minimize flow completion times, and so
addresses a different problem than ours. CONGA is installed
on leaf switches, measures the congestion for each flow, and
realizes load balancing decision using VXLAN when forward-
ing the first packet of a flow. Clove [58] tackles the same
problem as CONGA and is implemented in the hypervisor of
the end-host.

TPC, in contrast to the related work, is a transport-based
solution that utilizes standardized IPv6 Segment Routing. In
addition, TPC leverages eBPF programs, enabling the tuning
of its behavior to the requirements of different applications
(not only with respect to failure recovery but also with respect
to route selection).

VI. CONCLUSION AND DISCUSSION

TCP was designed to depend on the network layer for select-
ing the path used to reach any given destination. This sepa-
ration of functions between the transport and network layer
implies that TCP can only react in two ways to network-level
events: the retransmission of lost packets and the adaptation
of its transmission rate.

We have proposed the TCP Path Changer (TPC). TPC
makes TCP more agile by enabling the TCP stack to change
the current network-layer path in reaction to different types of
events. Thanks to eBPF, each application can inject its own
TPC into the underlying Linux TCP/IP stack. To illustrate the
benefits of TPC, we have applied it to two very different use-
cases. First, we have shown that TPC can detect distant link
failures and react quickly by rerouting the affected connec-
tions, and also monitor the health of a connection and reroute
it when needed. Second, we demonstrated how servers can use
our TPC to find small delay paths.

Our plans for future research include applying TPC to other
use-cases (e.g., rerouting connections to better utilize network
bandwidth) and to collect measurements from production
traffic.

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on August 06,2025 at 09:42:25 UTC from IEEE Xplore. Restrictions apply.

2838

SOFTWARE ARTIFACTS

To encourage system administrators and network
researchers to build upon our eBPF-based TPC, we
release our eBPF programs at https://github.com/jadinm/tpc-
ebpf and modifications to the Linux kernel at
https://github.com/jadinm/tpc-kernel. TPC is composed
of 1100 lines of eBPF code and 470 lines of kernel patch.
We also release scripts to run our experiment environment at
https://github.com/jadinm/tpc.

REFERENCES

[1] M. Trevisan et al., “Five years at the edge: Watching Internet from the
ISP network,” IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 561-574,
Apr. 2020.

[2] J. Postel, “Transmission control protocol,” IETF, RFC 793, Sep. 1981.

[3] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM
Comput. Commun. Rev., vol. 18, no. 4, pp. 314-329, 1988.

[4] R. Al-Saadi et al., “A survey of delay-based and hybrid TCP conges-
tion control algorithms,” IEEE Commun. Surveys Tuts., vol. 21, no. 4,
pp. 3609-3638, 4th Quart., 2019.

[5] D. A. Borman et al., “TCP extensions for high performance,” IETF,
RFC 1323, May 1992.

[6] M. Mathis et al., “TCP selective acknowledgment options,” IETF, RFC
2018, Oct. 1996.

[71 C. Hopps, “Analysis of an equal-cost multi-path algorithm,” IETF,
RFC 2992, Nov. 2000.

[8] Y. Cheng et al., “The RACK-TLP loss detection algorithm for TCP,”
IETF, RFC 8985, Feb. 2021.

[9]1 A. Markopoulou et al., “Characterization of failures in an operational IP
backbone network,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 749—
762, Aug. 2008.

[10] D. Watson et al., “Experiences with monitoring OSPF on a regional
service provider network,” in Proc. IEEE ICDCS, 2003, pp. 204-213.

[11] W. Reda et al., “Path persistence in the cloud: A study of the effects
of inter-region traffic engineering in a large cloud provider’s network,”
ACM SIGCOMM Comput. Commun. Rev., vol. 50, no. 2, pp. 11-23,
2020.

[12] V. Paxson, “End-to-end routing behavior in the Internet,” IEEE/ACM
Trans. Netw., vol. 5, no. 5, pp. 601-615, Oct. 1997.

[13] B. Augustin et al., “Measuring multipath routing in the Internet,”
IEEE/ACM Trans. Netw., vol. 19, no. 3, pp. 830-840, Jun. 2011.

[14] C. Pelsser et al., “From Paris to Tokyo: On the suitability of ping to
measure latency,” in Proc. ACM IMC, 2013, pp. 427-432.

[15] G. Detal et al., “Revisiting flow-based load balancing: Stateless path
selection in data center networks,” Comput. Netw., vol. 57, no. 5,
pp. 1204-1216, 2013.

[16] A. Kabbani et al., “FlowBender: Flow-level adaptive routing for
improved latency and throughput in datacenter networks,” in Proc. ACM
CoNEXT, 2014, pp. 149-160.

[17] A. Ford et al., “TCP extensions for multipath operation with multiple
addresses,” IETF, RFC 6824, Jan. 2013.

[18] C. Raiciu et al., “Improving datacenter performance and robustness with
multipath TCP,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 4,
pp. 266-277, 2011.

[19] J. Postel, “Internet protocol,” IETF, RFC 791, Sep. 1981.

[20] S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6) specifi-
cation,” IETF, RFC 2460, Dec. 1998.

[21] S. M. Bellovin, “Security problems in the TCP/IP protocol suite,” ACM
SIGCOMM Comput. Commun. Rev., vol. 19, no. 2, pp. 32-48, 1989.

[22] G. Neville-Neil et al., “Deprecation of type 0 routing headers in IPv6,”
IETF, RFC 5095, Dec. 2007.

[23] C. Filsfils et al., “The segment routing architecture,” in Proc. IEEE
GLOBECOM, 2015, pp. 1-6.

[24] C. Filsfils et al., “Segment routing architecture,” IETF, RFC 8402,
Jul. 2018.

[25] R. Hartert et al, “Solving segment routing problems with hybrid
constraint programming techniques,” in Proc. CP, 2015, pp. 592-608.

[26] F. Aubry et al., “Traffic duplication through segmentable disjoint paths,”
in Proc. IFIP Netw., 2015, pp. 1-9.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

[27] T. Schiiller et al., “Traffic engineering using segment routing and con-
sidering requirements of a carrier IP network,” IEEE/ACM Trans. Netw.,
vol. 26, no. 4, pp. 1851-1864, Aug. 2018.

[28] P. L. Ventre et al., “Segment routing: A comprehensive survey of
research activities, standardization efforts, and implementation results,”
IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 182-221, Ist Quart.,
2021.

[29] “eBPE” The Linux Foundation. Oct.
https://ebpf.io

[30] D. Thaler and P. Gaddehosur. “Making eBPF Work on Windows.”
May 2021. [Online]. Available: https://cloudblogs.microsoft.com/
opensource/2021/05/10/making-ebpf-work-on-windows/

[31] Y. Hayakawa, “eBPF implementation for FreeBSD,” in Proc. BSDCan,
2018, pp. 1-33.

[32] S. Sarwood. “OVH Data Centre Destroyed by Fire in Strasbourg—All
Services Unavailable.” The Register. Mar. 2021. [Online]. Available:
https://www.theregister.com/2021/03/10/ovh_strasbourg_fire/

[33] D. Walton, A. Retana, E. Chen, and J. Scudder, “Advertisement of
multiple paths in BGP,” IETF, RFC 7911, Jul. 2016.

[34] M. K. McKausick, K. Bostic, M. J. Karels, and J. S. Quarterman, The
Design and Implementation of the 4.4 BSD Operating System, vol. 2.
Reading, MA, USA: Addison-Wesley, 1996.

[35] K. R. Fall and W. R. Stevens, TCP/IP Illustrated, Volume 1I:
The Protocols. Boston, MA, USA: Addison-Wesley, 2011.

[36] B. Gregg, BPF Performance Tools. Boston, MA, USA: Addison-Wesley
Prof., 2019.

[37] L. Brakmo, “TCP-BPF: Programmatically tuning TCP behavior through
BPE” in Proc. NetDev 2.2, 2017, pp. 1-5.

[38] V.-H. Tran and O. Bonaventure, “Beyond socket options: Towards
fully extensible Linux transport stacks,” Comput. Commun., vol. 162,
pp. 118-138, Oct. 2020.

[39] D. Lebrun and O. Bonaventure, “Implementing IPv6 segment routing in
the Linux kernel,” in Proc. ACM ANRW, 2017, pp. 35-41.

[40] S. Mirtorabi et al., “Multi-topology (MT) routing in OSPE,” IETF, RFC
4915, Jun. 2007.

[41] P. Gill et al., “Understanding network failures in data centers:
Measurement, analysis, and implications,” in Proc. ACM SIGCOMM,
2011, pp. 350-361.

[42] M. Chiesa et al., “Lying your way to better traffic engineering,” in Proc.
ACM CoNEXT, 2016, pp. 391-398.

[43] M. Chiesa et al., “A survey of fast-recovery mechanisms in packet-
switched networks,” IEEE Commun. Surveys Tuts., vol. 23, no. 2,
pp. 1253-1301, 2nd Quart., 2021.

[44] L. Wang et al., “Understanding BGP session failures in a large ISP,” in
Proc. IEEE INFOCOM, 2007, pp. 348-356.

[45] T. Holterbach et al., “Blink: Fast connectivity recovery entirely in the
data plane,” in Proc. USENIX NSDI, 2019, pp. 161-176.

[46] M. Sargent et al., “Computing TCP’s retransmission timer,” IETF, RFC
6298, Jun. 2011.

[47] W. Eddy, “TCP SYN flooding attacks and common mitigations,” IETF,
RFC 4987, Aug. 2007.

[48] N. Handigol et al., “Reproducible network experiments using container-
based emulation,” in Proc. ACM CoNEXT, 2012, pp. 253-264.

[49] A. Dhamdhere et al., “Inferring persistent interdomain congestion,” in
Proc. ACM SIGCOMM, 2018, pp. 1-15.

[50] R. Fanou et al., “Investigating the causes of congestion on the African
IXP substrate,” in Proc. ACM IMC, 2017, pp. 57-63.

[51] S.S. Villar et al., “Multi-armed bandit models for the optimal design of
clinical trials: Benefits and challenges,” Stat. Sci. A, Rev. J. Inst. Math.
Stat., vol. 30, no. 2, pp. 199-215, 2015.

[52] D. V. Paxson and M. Allman, “Computing TCP’s retransmission timer,”
IETF, RFC 2988, Nov. 2000.

[53] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” 2012, arXiv:1204.5721.

[54] R. Landa et al., “Staying alive: Connection path reselection at the edge,”
in Proc. USENIX NSDI, 2021, pp. 233-251.

[55] J. T. Aradjo et al., “Software-defined network support for transport
resilience,” in Proc. IEEE NOMS, 2014, pp. 1-8.

[56] S. Fischer et al., “REPLEX: Dynamic traffic engineering based on
wardrop routing policies,” in Proc. ACM CoNEXT, 2006, pp. 1-12.

[57] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in Proc. ACM SIGCOMM, 2014, pp. 503-514.

[58] N. Katta et al., “Clove: Congestion-aware load balancing at the virtual
edge,” in Proc. ACM CoNEXT, 2017, pp. 323-335.

2021. [Online]. Available:

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on August 06,2025 at 09:42:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

