Experimenting with Bit Index Explicit Replication

Anonymous Author(s)

ABSTRACT

Bit Index Explicit Replication (BIER) is a recent multicast
architecture that solves several problems with deployed IP
multicast protocols. BIER embeds an implicit multicast tree
representation inside each transmitted packet. With this new
mechanism, it becomes possible to reconsider multicast ap-
plications. However, no open-source implementation of BIER
can be found. This paper presents our open-source implemen-
tation of the BIER forwarding mechanism and a companion
socket-like API. Additionally, we show simulations of the
implementation with ns-3 DCE.

1 INTRODUCTION

Multicast protocols enable efficient one-to-many commu-
nication as packets are duplicated in the network only when
needed, thus ensuring that at most a single copy of a same
packet will reach each router. IP Multicast, the current de-
ployment of this architecture, suffers from scalability is-
sues [3]. One of them concerns the states that each node
of a multicast tree must keep as the tree is explicitly built.
This memory consumption linearly grows with the number
of multicast groups in a network, thus becoming a problem
for large-scale multicast deployments.

The IETF standardized the Bit Index Explicit Replication
(BIER) [7], a new source-routed multicast transmission mech-
anism. Each BIER packet embeds a bitstring, where each bit
uniquely represents an egress router in the network. A bit
set indicates that the corresponding router should receive
the packet. Based on the bitstring, forwarding nodes rely
on their Bit Index Forwarding Table (BIFT) to choose the
output interface(s) for the packet (and its potential copies),
thus implicitly building the multicast tree. The table is con-
structed statically or following the Interior Gateway Protocol
(IGP). In opposition to IP multicast, the intermediate routers
need constant memory state, independently of the number
of multicast groups in the network.

BIER opens-up possibilities for easier deployment of mul-
ticast applications. New transport protocols can be built atop
this mechanism and benefit from its source-routed architec-
ture. Other research problems could also be reconsidered,
such as reliable multicast and multicast congestion control
algorithms using the traffic-engineering extensions for BIER
(BIER-TE) [4]. Recent works already explore that direction.
However, they either rely on simulation models [2], P4 de-
signs [6], or non-open-source implementation [5].

Open-source implementations of protocols help to drive
research and evaluate new designs. In this paper, we present

our open-source implementation of the BIER data-plane. Its
objective is to provide to the research community a build-
ing block to design and experiment protocols on top of this
new multicast architecture. It leverages the C standard li-
brary to represent a BIER data-plane daemon. As no for-
mal API has been defined by the IETF to communicate with
BIER, we propose and implement a socket-like API to inter-
act with our daemon. The BIER packets are forwarded using
IPv4/IPv6 tunnels [9] to accommodate existing networks that
do not natively support the architecture. We also provide
an implementation of the BIER-TE draft [4]. To demonstrate
it, we simulate a small network topology with ns-3 DCE
and our daemon. The implementation essentially focuses on
source-specific multicast, with (S,G) representing the multi-
cast Source and Group addresses pair. Section 2 presents the
BIER data-plane implementation and the API to communi-
cate with the daemon. The ns-3 DCE simulation is detailed
in Section 3. Section 4 concludes this paper. The data-plane
uses ~1500 SLOC and the API uses 400 SLOC.

2 IMPLEMENTATION

We design our daemon to work on existing Linux network
stacks. As such, BIER packets are encapsulated in IPv4/IPv6
tunnels [9] between two BIER Forwarding Routers (BFR). The
destination of the tunnel headers is the address of the next
BFR that will process the packet. The next BFR is found by
inspecting the packet bitstring. For each bit set in the bitstring,
the daemon queries its BIFT, and erases the potential other
bits that are mapped to the same outgoing interface. Finally,
it sends to the next BFR a copy of the modified packet.

Each router running the daemon listens to incoming BIER
packets using a raw IP socket. This socket is also used to
forward the packet copies after processing.

The implementation supports the BIER-TE extension [4]
for traffic engineering purposes. With BIER-TE, each link
(or IP tunnel) between two BFRs is also assigned a bit in
the bitstring. To forward a packet, a BFR now inspects the
bits corresponding to its outgoing interfaces. BIER-TE offers
strong traffic-engineering capabilities, at the cost that the
source must explicitly encode the entire path towards the
BIER egress routers of the multicast flow.

The two forwarding mechanisms are distinct and have
different outcomes. We leverage the BIFT-id of the BIER
header [8] to let the data-plane daemon understand which
procedure to use when it processes a BIER packet.

The data-plane daemon runs in its own process to forward
and create BIER packets. However, a BIER Forwarding Router



o

may also act as an egress router, meaning that it could receive
packets destined to its connected hosts. These packets should
leave the BIER data-plane and be forwarded to an upper layer.
Additionally, a multicast source must be able to send packets
towards its receivers through the BIER data-plane.

To this end, we designed a socket-like API to let upper-
layer applications, e.g., multicast transport protocols, com-
municate with the BIER daemon. As the daemon runs in its
own process, the channel uses datagram UNIX sockets in
both directions. The API (Listing 1) mimics the socket APL

sendto_bier (int socket, const void =buf,
sockaddr xdest_addr ,

uintl6_t proto,

ssize_t

size_t len, const struct

socklen_t addrlen , bier_info_t
+»bier_info);
void =buf,

sockaddr «src_addr,

ssize_t recvfrom_bier(int socket,

size t len, struct
socklen_t xaddrlen ,
int bind_bier(int

«bier_sock_path ,

bier_info_t «bier_info);

socket , const struct sockaddr_un

bier_bind_t +bind_to);
Listing 1: Socket-like APIL

sendto_bier forwards to the daemon the payload buf
of length len. The UNIX path to the data-plane daemon is
represented by dest_addr, of length addrlen. The proto
value specifies the protocol of the payload, as defined in [7].
The last parameter, bier_info, is a new structure containing
(i) the BIFT-id that a BFR uses to forward the packet, (ii) the
bitstring of the packet and (iii) the bitstring length [8].

recvfrom_bier reads packets received from the data-plane
daemon in buf, of capacity len. The src_addr is the address
of the upstream BFR. bier_info carries the position in the
bitstring of the upstream BIER router.

bind_bier informs BIER of the interest of an application
in a multicast flow. bier_sock_path is again the UNIX path
to communicate with the daemon. bier_to is yet another
structure that specifies the (S,G) pair.

Similarly, unbind_bier (same signature as bind_bier)
communicates to the daemon the intent to leave the multicast
group. Upon reception of these messages, the BIER data-
plane forwards to the BIER ingress router a BIER packet
containing the multicast join/leave message.

3 SIMULATING BIER

We demonstrate our implementation using ns-3. We wrote
a wrapper to simulate our daemon in ns-3 without source
code change [1]. For illustration, we simulate a small network
of 6 routers. The topology is represented in Figure 1. All links
have a cost of 1, except -2 and 1-4 with a cost of 10. For
simplification, we simulate hosts directly on the nodes and
compute BIFTs beforehand using a shortest-path algorithm.
Our host receivers and senders leverage our socket-like APL
Node 0 simulates a multicast sender, waiting for all other
nodes (the receivers) to send a multicast join request. We run

Anon.

110 110
2 \ 3 2 / 3
e ogP
4 6 4 6
(a) BIER tree. (b) BIER-TE tree.

Figure 1: Small network topology with 6 nodes.

the simulation with BIER and BIER-TE, and collect packet
captures from each interface of all routers. The multicast
trees constructed by BIER are represented in bold orange by
analyzing these packet captures.

With BIER, the multicast tree is implicitly built using the
shortest path towards its leaves. As expected, the flow uses
the shortest path to reach each receiver (Figure 1a). BIER-
TE [4] enables the source to specify the entire multicast tree
for traffic engineering purposes. Once the receivers join the
multicast flow, we set the bitstring so that the multicast tree
uses the two links with a cost of 10. Figure 1b shows that the
path is correctly enforced despite the higher link costs.

4 CONCLUSION

This paper presented our open-source implementation of
the Bit Index Explicit Replication (BIER) forwarding mecha-
nism [7]. We provide our BIER implementation and a sim-
ple socket-like API to communicate with our daemon. This
implementation can be deployed in networks that do not
support BIER by leveraging IP tunnels to carry the BIER
packets [9]. With this mechanism, several research problems
related to multicast transport protocols can be tackled more
easily, such as reliable communication, multicast congestion
control and scalable deployment. We hope that this work
will stimulate the research community into new efforts in
developing multicast protocols above BIER.

REFERENCES

[1] Anonymous. [n. d.]. Anonymized source code.

[2] Yoann Desmouceaux et al. 2018. Reliable multicast with BIER. Journal
of Communications and Networks 20, 2 (2018), 182-197.

[3] Christophe Diot et al. 2000. Deployment issues for the IP multicast
service and architecture. IEEE network 14, 1 (2000), 78—88.

[4] Toerless Eckert et al. 2022. Tree Engineering for Bit Index Explicit Repli-
cation (BIER-TE). Internet-Draft draft-ietf-bier-te-arch-13. Internet En-
gineering Task Force. Work in Progress.

[5] Alessio Giorgetti et al. 2017. Bit Index Explicit Replication (BIER)
multicasting in transport networks. In ONDM 2017. IEEE, 1-5.

[6] Daniel Merling et al. 2021. Hardware-based evaluation of scalable and
resilient multicast with bier in p4. IEEE Access 9 (2021), 34500-34514.

[7] IJsbrand Wijnands et al. 2017. Multicast Using Bit Index Explicit Repli-
cation (BIER). RFC 8279. (Nov. 2017).

[8] IJsbrand Wijnands et al. 2018. Encapsulation for Bit Index Explicit
Replication (BIER) in MPLS and Non-MPLS Networks. RFC 8296. (2018).

[9] Zheng Zhang et al. 2022. Supporting BIER in IPv6 Networks (BIERin6).
Internet-Draft draft-ietf-bier-bierin6-05. IETF. WIP.



	Abstract
	1 Introduction
	2 Implementation
	3 Simulating BIER
	4 Conclusion
	References

